

COURSE SYLLABUS

Subject: Mechanics of Materials Lecturer:

Phone:

Academic field: Aerospace Engineering and Application

E-mail:

Academic year: 2013-2014

COURSE DESCRIPTION

University of Science and Technology of Hanoi Address: Building 2H, 18 Hoang Quoc Viet, Cau Giay, Hanoi Telephone/ Fax: +84-4 37 91 69 60

Email: officeusth@usth.edu.vn

Website: http://www.usth.edu.vn

	ternal forces. The use of "picture equations" will inderstand the superposition of loadings and the formations.						
	in statics. However, lec	ents using this text will have completed a course tures are also designed to provide students with the concepts learned in that course.					
	The course consists of lectures, quizzes, class exercises, homewassignments, an intermediate examination, and a final examination.						
	This 'Mechanics of Materials' course is a very important and fundamental course designed for the engineering student and help them the ability to analyze a given problem in a simple and logical manner and to apply to its solution a few fundamental and well-understood principles.						
Objectives & Outcome	The main objective of the course is to study the behavior or "internal effects" of structures caused by external loads, and provide the future engineer with the means of analyzing and designing various machines and load bearing structures.						
	Attendance/Attitude	10%					
Assessment/ Evaluation	Class exercise(s)	20%					
	Assignment(s)	20%					
	Mid-term test Final exam	20% 30%					
Prescribed Textbook(s)	 [1] Bear FP., Johnston ER., DeWolf JT., Mazureck DF., Mechanics of Materials. 5th edition, Mc Graw Hill, 2008. [2] Hibbeler RC., Mechanics of Materials. 5th edition, Prentice Hall, 2011. 						

COURSE CONTENTS & SCHEDULE

S	Contents	Hours				
Class		Lect.	Exr.	Prc.	Ref./Resources	Assignment(s)
1	 Chapter 1: Introduction –Concept of Stress Stress Definition Statics Review Stress Analysis Normal and Shear Stress 	2			Chapter 1 [1]	Assignment-1

	Stress on an Oblique Plane				
	_				
	Maximum Stress				
	Stress under General Loadings, State of Stress				
2	 Chapter 2: Stress and Strain – Axial Loading Normal Strain Stress-Strain Test Stress-Strain Diagram Hooke's Law Saint-Venant's Principle Stress Concentration Thermal and Residual Stresses Examples 	3	1	Chapter 2 [1]	Assignment-2
3	 Chapter 3: Torsion Torsional Loads on Circular Shafts Torque due to Internal Stresses Axial Shear Components Shear Strain Stresses in Elastic Range Torsional Failure Modes Angle of Twist in Elastic Range Torsion of Noncircular Members Thin-Walled Hollow Shafts Examples 	2	1	Chapter 3 [1]	Assignment-3
4	 Chapter 4: Pure Bending Other Loading Types Symmetric Member in Pure Bending Bending Deformations Strain Due to Bending Beam Section Properties Deformations in a Transverse Cross Section Plastic Deformations Eccentric Axial Loading in a Plane of Symmetry Unsymmetric Bending General Case of Eccentric Axial 	3	2	Chapter 4 [1]	Assignment-4

Website: http://www.usth.edu.vn

	LoadingExamples				
5	 Chapter 5: Analysis and Design of Beams for Bending Shear and Bending Moment Diagrams Relations among Load, Shear, and Bending Moment Design of Prismatic Beams for Bending Examples 	2	1	Chapter 5 [1]	Assignment-5
6	 Chapter 6: Shearing Stresses in Beams and Thin-Walled Members Shear on the Horizontal Face of a Beam Element Determination of the Shearing Stress in a Beam Shearing Stresses txy in Common Types of Beams Further Discussion of the Distribution of Stresses Longitudinal Shear on a Beam Element of Arbitrary Shape Shearing Stresses in Thin-Walled Members Unsymmetric Loading of Thin- Walled Members Examples 	2	1	Chapter 6 [1]	Assignment-6
7	 Chapter 7: Transformations of Stress and Strain Transformation of Plane Stress Principal Stresses Maximum Shearing Stress Mohr's Circle for Plane Stress General State of Stress Application of Mohr's Circle to the Three- Dimensional Analysis of Stress Yield Criteria for Ductile Materials Under Plane Stress Fracture Criteria for Brittle Materials Under Plane Stress Stresses in Thin-Walled Pressure Vessels 	3	1	Chapter 7 [1]	Assignment-7
8	Chapter 8: Principal Stresses Under a Given	2	1	Chapter 8 [1]	Assignment-8

	Loading				
	 Principle Stresses in a Beam Design of a Transmission Shaft Stresses Under Combined Loadings 				
9	 Chapter 9: Deflection of Beams Deformation of a Beam Under Transverse Loading Equation of the Elastic Curve Direct Determination of the Elastic Curve Statically Indeterminate Beams Method of Superposition Application of Superposition Moment-Area Theorems Application to Cantilever Beams Bending Moment Diagrams by Parts 	2	1	Chapter 9 [1]	Assignment-9
	 Application of Moment-Area Theorems to Beams Maximum Deflection Use of Moment-Area Theorems 				
10	 Chapter 10: Columns Stability of Structures Euler's Formula for Pin-Ended Beams Extension of Euler's Formula Eccentric Loading; The Secant Formula Design of Columns Under Centric Load Design of Columns Under an Eccentric 	2	1	Chapter 10 [1]	Assignment-10
11	 Chapter 11: Energy Methods Strain Energy Strain Energy Density Elastic Strain Energy for Normal Stresses Strain Energy For Shearing Stresses Strain Energy for a General State of Stress Impact Loading Design for Impact Loads Work and Energy Under a Single Load Deflection Under a Single Loads Castigliano's Theorem Deflections by Castigliano's Theorem 	3	2	Chapter 11 [1]	Assignment-11

Notes:

- Abbreviation: Lect. (lecture), Exr. (Exercise), Prc. (Practice).
- Assignments may include assignments, practical work, reports, exercises ... for each class sessions

Reference Literature:

[1] Bear FP., Johnston ER., DeWolf JT., Mazureck DF., Mechanics of Materials. 5th edition, Mc Graw Hill, 2008.

[2] Hibbeler RC., Mechanics of Materials. 5th edition, Prentice Hall, 2011.