

University of Science and Technology of Hanoi Address: Building 2H, 18 Hoang Quoc Viet, Cau Giay, Hanoi Telephone/ Fax: +84-4 37 91 69 60 Email: <u>officeusth@usth.edu.vn</u> Website: http://www.usth.edu.vn

COURSE SYLLABUS

Application

Subject: Signal Processing

Lecturer: Nguyễn Công Phương

Phone: 0912905931

E-mail: phuong.nguyencong@hust.edu.vn

Academic field: Space Science and

Academic year:

COURSE DESCRIPTION

Credit points	4						
Level	Undergraduate						
Teaching time Location	University of Science and Technology of Hanoi						
	Lecture	25 hrs					
Time Commitment	Exercises	10 hrs					
The Communent	Practicals	5 hrs					
	Total	40 hrs					
Prerequisites	Mathematics for Engine	eering					
Recommended background knowledge	A background in calculus, complex number and variable, and the basics of linear algebra.						
Subject description:	This subject provides knowledges of ways to record, create, manipulate, and transform signals (such as speech, audio, image, video, electrocardiograms, etc.) These operations are fundamental to construct modern information and communication systems.						
Objectives & Out-come	 Objectives: 1. To provide students with knowledges on concepts of analog and digital signals, analog and digital system, and signal processing in the continuous – time and discrete – time domains. 2. To provide students with concepts of mathematical operations on signals, such as convolution, <i>z</i> – transform, fast Fourier transform, etc. 3. To provide students with techniques to analyse signal processing systems and techniques to design digital filters. <i>Outcome</i>: After completing this course, students will be able to: 1. Understand the concept of signal and distinguish between continuous – time, discrete – time, and digital signals, and describe them by their physical and mathematical representation. 2. Apply mathematical operations on signals, e.g. convolution, <i>z</i> – 						

University of Science and Technology of Hanoi Address: Building 2H, 18 Hoang Quoc Viet, Cau Giay, Hanoi Telephone/ Fax: +84-4 37 91 69 60

Email: officeusth@usth.edu.vn

Website: http://www.usth.edu.vn

	transform, Fourier transform, etc.3. Design digital filters (such as FIR, IIR) to manipulate signals using signal processing algorithms and techniques, and implement them using Matlab.					
	Attendance/Attitude	5%				
Assessment/ Evaluation	Exercise(s)	<u> 10% </u>				
Assessment, Evaluation	Practicals	<u>15%</u>				
	Mid-term test	<mark>20%</mark>				
	Final exam	<mark>50%</mark>				
Prescribed Textbook(s)	[1] D. Manolakis and V. Ingle. <i>Applied Digital Signal Processing</i> . Cambride, 2011.					
	[2] J. G. Proakis and D. G. Manolakis. <i>Digital Signal Processing – Principles, Algorithms, and Applications</i> . Prentice – Hall, 1996.					

COURSE CONTENTS & SCHEDULE

S			Hours				
Class	Contents	Lect.	Exr.	Prc.	Ref./Resources	Assignment(s)	
1	Introduction 1.1 Signals 1.2 Systems 1.3 Analog, Digital, and Mixed Signals Processing 1.4 Application of Digital Signal Processing	1	0	0			
2	 Discrete – Time Signals and Systems 2.1 Discrete – Time Signals 2.2 Discrete – Time Systems 2.3 Convolution Description of Linear Time – Invariant Systems 2.4 Properties of Linear Time – Invariant Systems 2.5 Analytical Evaluation of Convolution 2.6 Numerical Computation of Convolution 2.7 Real – Time Implementation of FIR Filters 2.8 FIR Spatial Filters 2.9 Systems Described by Linear Constant – Coefficient Difference Equations 2.10 Continuous – Time LTI Systems 	2	1	0			
3	The <i>z</i> – Transform	2	1	0			

University of Science and Technology of Hanoi Address: Building 2H, 18 Hoang Quoc Viet, Cau Giay, Hanoi Telephone/ Fax: +84-4 37 91 69 60

Email: officeusth@usth.edu.vn

Website: http://www.usth.edu.vn

					I
	3.1 The z – Transform				
	3.2 The Inverse <i>z</i> – Transform				
	3.3 Properties of the z – Transform				
	3.4 System Function of LTI Systems				
	3.5 LTI Systems Characterized by Linear				
	Constant – Coefficient Difference				
	Equations				
	3.6 Connections between Pole – Zero				
	Locations and Time – Domain Behavior				
	Fourier Representation of Signals				
	4.1 Sinusoidal Signals and Their Properties				
	4.2 Fourier Representation of Continuous –				
	Time Signals				
4	4.3 Fourier Representation of Discrete – Time	2	1	0	
-	Signals	2	1	U	
	4.4 Summary of Fourier Series and Fourier				
	Transforms				
	4.5 Propertiers of the Discrete – Time Fourier				
	-				
	Transform				
	Transform Analysis of LTI Systems				
	5.1 Sinusoidal Response of LTI Systems				
	5.2 Response of LTI Systems in the Frequency				
	Domain				
	5.3 Distortion of Signals Passing through LTI				
	• • •				
	Systems				
	5.4 Ideal and Practical Filters				
	5.5 Frequency Response for Rational System				
	Functions				
~	5.6 Dependency of Frequency Response on	2.5			
5	Poles and Zeros	2.5	1	1	
	5.7 Design of Simple Filters by Pole – Zero				
	Placement				
	5.8 Relationship between Magnitude and				
	Phase Responses				
	5.9 Allpass Systems				
	5.10 Invertibility and Minimum – Phase				
	Systems				
	5.11 Transform Analysis of Continuous –				
	•				
	Time Systems				
	Sampling of Continuous – Time Signals				
	6.1 Ideal Periodic Sampling of Continuous –				
	Time Signals				
	6.2 Reconstruction of a Bandlimited Signal	~	4	_	
6	from its Samples	2	1	0	
	6.3 The Effect of Undersampling: Aliasing				
	6.4 Discrete – Time Processing of Continuous				
	– Time Signals				

University of Science and Technology of Hanoi Address: Building 2H, 18 Hoang Quoc Viet, Cau Giay, Hanoi Telephone/ Fax: +84-4 37 91 69 60 Email: <u>officeusth@usth.edu.vn</u>

Website: http://www.usth.edu.vn

	6.5 Practical Sampling and Reconstruction				
	6.6 Sampling of Bandpass Signals				
	The Discrete Fourier Transform				
	7.1 Computational Fourier Analysis				
	7.2 The Discrete Fourier Transform (DFT)				
	7.3 Sampling the Discrete – Time Fourier				
	Transform				
	7.4 Properties of the Discrete Fourier				
	Transform				
	7.5 Linear Convolution using the DFT				
7	7.6 Fourier Analysis of Signals using the DFT	3.5	1	1	
	7.7 Direct Computation of the Discrete Fourier Transform				
	7.8 The FFT Idea using a Matrix Approach				
	7.9 Decimation – in – Time FFT Algorithms				
	7.10 Decimation $-$ in $-$ Frequency FFT				
	Algorithms				
	7.11 Generalization and Additional FFT				
	Algorithms				
	7.12 Practical Considerations				
	Structures for Discrete – Time Systems				
	8.1 Block Diagrams and Signal Flow Graphs				
0	8.2 IIR System Structures	2	1	0	
8	8.3 FIR System Structures8.4 Lattice Structures	2	1	0	
	8.5 Structure Conversion, Simulation, and				
	Verification				
	Design of FIR Filters				
	9.1 The Filter Design Problem				
	9.2 FIR Filters with Linear Phase				
	9.3 Design of FIR Filters by Windowing				
9	9.4 Design of FIR Filters by frequency	2.5	1	1	
-	sampling		-		
	9.5 Chebyshev Polynomials and Minimax				
	Approximation 9.6 Equiripple Optimum Chebyshev FIR Filter				
	Design				
	Design of IIR Filters			<u> </u>	
	10.1 Introduction to IIR Filter Design				
	10.2 Design of Continuous – Time Lowpass				
	Filters				
10	10.3 Transformation of Continuous – Time	2.5	1	1	
10	Filters to Discrete – Time IIR Filters	2.5			
	10.4 Design Examples for Lowpass IIR				
	Filters				
	10.5 Frequency Transformation of Lowpass Filters				
	111115				

University of Science and Technology of Hanoi Address: Building 2H, 18 Hoang Quoc Viet, Cau Giay, Hanoi Telephone/ Fax: +84-4 37 91 69 60 Email: <u>officeusth@usth.edu.vn</u> Website: http://www.usth.edu.vn

	Rand	om Signal Processing				
	11.1 Probability Models and Random					
	Variables					
	11.2	11.2 Jointly Distributed Random Variables				
	11.3	Covariance, Correlation, and Linear				
	E	stimation				
	11.4	Random Process	3	1	1	
11	11.5	Some Useful Random Process Models				
11	11.6 Estimation of Mean, Variance, and			1	1	
	Covariance					
	11.7	11.7 Spectral Analysis of Stationary				
	P	rocesses				
	11.8	Optimum Linear Filters				
	11.9	9 Linear Prediction and All – Pole Signal				
	Modeling					
	11.10	Optimum Orthogonal Transforms				
17.	ator.					

Notes:

- Abbreviation: Lect. (lecture), Exr. (Exercise), Prc. (Practise).
- Exercises may include assignment, reports, student's presentation, homework, class exercises ... for each class sessions
- Practicals mostly refer to Lab- work or outside practice such as field trip.

Reference Literature:

[1]	RN	Bracewell	The F	Fourier	Transform	and its A	Applications	McGraw-Hill, 2000
[1].	IX. 13.	Dracewen.	Inel	ouner	1 ransjorm	unu ns r	applications.	MCOIaw-IIII, 2000

[2]. V. K. Madisetti, D. B. Williams. Digital Signal Processing Handbook. CRC Press, 1999

[3]. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. Signals and Systems. Prentice Hall, 1997

[4]. S. Stergiopoulos. Advanced Signal Processing Handbook. CRC Press, 2001