

Website: http://www.usth.edu.vn

COURSE SYLLABUS

Academic field: Energy

Lecturer: Dr. Nguyen Xuan Truong

Subject: Electrical Circuits I

Phone: 094 964 5551

E-mail: nguyen-xuan.truong@usth.edu.vn

Academic year: 2016-2017

COURSE DESCRIPTION

Credit points	04						
Level	Undergraduate						
Teaching time Location	University of Science and Technology of Hanoi						
	Lecture	30 hrs					
	Exercises	10 hrs					
1 ime Commitment	Practice	8 hrs					
	Total	48 hrs					
Prerequisites	Electrical Circuits I	-					
Recommended background knowledge	Knowledge of physics; Differential Equations, General mathematics						
Subject description:	 Alternating Current (AC) electrical circuits AC Steady-State Circuits Analysis Power in AC Circuits Three-Phase Circuits Laplace Transform Circuit Analysis in the s-Domain 						
Objectives & Out-come	 Analyze AC steady state behaviour of a circuit Calculate power in AC circuits Determine the power supplied and distributed in three-phase systems Use Laplace Transform for circuit analysis Apply Differential Equation Approach and Laplace method to determine transient reponse of second order circuits 						
	Attendance/Attitude	10 %					
Evaluation	Practical	20 %					
	Midterm Exam	30 %					
	Final exam	40 %					

Website: http://www.usth.edu.vn

Prescribed Textbook(s)	[1] J. David Irwin, R. Mark Nelms, Basic Engineering Circuit Analysis, 2008 John Wiley & Sons Inc.
	[2] John O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, Second edition, McGraw-Hill

COURSE CONTENTS & SCHEDULE

Ire	Contents		Hours	5	Ref./Resource s	Assignment(s)
Lectu			Exr.	Prc.		
1	INTRODUCTION 1.1. Sinusoids 1.2. Circuit theorems in Sinusoidal Steady- State Analysis 1.3. Phasor - Domain Circuit 1.4. Phasor - Diagrams					
2	AC STEADY-STATE CIRCUITS ANALYSIS 2.1. Nodal method 2.2. Mesh method 2.3. Superposition 2.4. Source Transformation 2.5. Thevenin, Norton equivalent circuits					
3	 POWER IN AC CIRCUITS 3.1. Introduction 3.2. Circuit Power Absorption 3.3. Wattmeters 3.4. Reactive Power 3.5. Complex Power and Apparent Power 					
4	THREE-PHASE CIRCUITS4.1. Introduction4.2. Three-Phase Connections4.3. Balanced Circuits4.4. Power in the balanced circuits4.5. Three-Phase Power Measurements					
5	THE LAPLACE TRANSFORM 5.1. Definition 5.2. Two Important Singularity Functions 5.3. Transform Pairs 5.4. Properties of the Transform 5.5. Inverse Transform 5.6. Convolution Integral					

Website: http://www.usth.edu.vn

	5.7. Initial-Value and Final-Value Theorems			
6	APPLICATION OF THE LAPLACE TRANSFORM TO CIRCUIT ANALYSIS 6.1. Laplace Circuit Solutions 6.2. Circuit Element Models 6.3. Analysis Techniques 6.4. Transfer Function 6.5. Poles-Zero Plot/Bode Plot Connection			
	6.6. Steady-State Response			
7	LABS			
	have in an AC electric circuit?			
	7.2. Laboratory 2: RLC Circuit (impedance of			
	parallel and series tuned circuits as a function			
	of frequency; phase displacement between			
	current and voltage for the series tuned circuit)			
	7.3. Laboratory 3: RLC measuring bridge			
	(Wheatstone bridge circuit operated on AC)			

Notes:

- Abbreviation: Lect. (lecture), Exr. (Exercise), Prc. (Practise).
- Exercises may include assignment, reports, student's presentation, homework, class exercises ... for each class sessions
- Practicals mostly refer to Lab- work or outside practice such as field trip.

Reference Literature:

- [1] J. David Irwin, R. Mark Nelms, **Basic Engineering Circuit Analysis**, 2008 John Wiley & Sons Inc.
- [2] John O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, Second edition, McGraw-Hill
- [3] Charles K. Alexander, Matthew N. O. Sadiku, Fundamentals of Electric Circuit, fifth edition, McGraw-Hill