

Lecture 2

Linear Regression

Dr. Le Huu Ton

Hanoi, 09/2016

Outline

Multi Feature Representation

Review of Machine Learning

For each input x, output y = h(x)

Table 1: Training data of housing price in Hanoi

In Supervised Learning, each training data consists of 2 elements: input x (features) and output y (response)

Notation

(x,y) (x⁽ⁱ⁾,y⁽ⁱ⁾)

- : One training data
- : the ith training data

Plotting of training data

Price of House in Hanoi

Linear Regression: Assume that the output **y** is a linear function of input **x**

*y=h(x)=a*x+b*

Objective:

Learning the function $y=h(x)=a^*x+b$, such as it returns the minimize error- cost function for the training data (optimization problem)

Find the coefficient *a*,*b* to minimize the cost function

Cost Function:

The error for training data:

$$e^{(1)} = \frac{1}{2} (h(x^{(1)}) - y^{(1)})^2 = \frac{1}{2} (30a + b - 2.5)^2$$

$$e^{(2)} = \frac{1}{2} (h(x^{(2)}) - y^{(2)})^2 = \frac{1}{2} (43a + b - 3.4)^2$$

.

Size(m²)	Price (b.VND)
30	2.5
43	3.4
25	1.8
51	4.5
40	3.2
20	1.6

7

$$e^{(m)} = \frac{1}{2}(h(x^{(m)}) - y^{(m)})^2 = \frac{1}{2}(x^{(m)}a + b - y^{(m)})^2$$

The cost function is define as:

$$E = \frac{1}{m} (e^{(1)} + e^{(2)} + \dots + e^{(m)}) = \frac{1}{m} \sum_{i=1}^{m} e^{(i)} = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

$$E = \frac{1}{2m} \sum_{i=1}^{m} (ax^{(i)} + b - y^{(i)})^2$$

Objective:

Use the gradient function to find a minimum of a function

$$E = \frac{1}{2m} \sum_{i=1}^{m} (ax^{(i)} + b - y^{(i)})^2$$

Note that E is a function of a and b, we have only 2 variables a and b.

Idea:

Choose random number for a and b, the algorithm is implemented in many steps. At each step, modify a and b such s the cost function is reduced

$$a \coloneqq a - \alpha \frac{\partial}{\partial_a} E(a)$$
 $b \coloneqq b - \alpha \frac{\partial}{\partial_b} E(b)$

A demonstration and explanation of Gradient Descent algorithm can be found at the following website:

http://www.onmyphd.com/?p=gradient.descent

Suppose that (x0,y0) is a local minimum of the cost function, what will 1 iteration of gradient descent do?

- 1. Leave x0 unchanged
- 2. Change x0 in random direction
- 3. Move x0 toward the global minimum
- 4. Decrease x0

Calculate the derivations of the cost function: $\frac{\partial}{\partial_a} E(a) = \frac{\partial}{\partial_b} E(b)$

$$E = \frac{1}{2m} \sum_{i=1}^{m} (ax^{(i)} + b - y^{(i)})^2$$

Given the following formula:

$$\frac{\partial}{\partial_x}(x^2) = 2x \qquad \qquad \frac{\partial}{\partial_x}(f(x)^2) = 2f(x) \cdot \frac{\partial}{\partial_x}f(x)$$

$$\frac{\partial}{\partial_a} E(a) = \frac{1}{m} \sum_{i=1}^m (ax^{(i)} + b - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial_b} E(b) = \frac{1}{m} \sum_{i=1}^m (ax^{(i)} + b - y^{(i)})$$

Exercise:

Starting at a=0 and b= 0, α =0.01, what is the cost function?

Calculate the value of a and b after first iteration (first step). Confirm if the cost function is reduced or not?

Size(m²)	Price (b.VND)
30	2.5
43	3.4
25	1.8
51	4.5
40	3.2
20	1.6

Batch and Stochastic Gradient Descent

Batch gradient Descent:

Compute the Gradient Descent using the whole data set

Stochastic Gradient Descent:

Compute the Gradient Descent using 1 training example at a time

- Randomly reorder the training data
- Use $(x^{(1)}, y^{(1)})$ to calculate the gradient descent in order to update a,b
- Use $(x^{(2)}, y^{(2)})$ to update

-

Mini-Batch Gradient Descent

Compute the Gradient Descent for t example at a time (1<t<m) Example:

We have 1000 training data.

....

- Step 1: Update the coefficient using 10 data 1-10
- Step 2: Update the coefficient using 10 data 11-20

Big value of α may lead to the incensement of cost function and not convergence

⇒ Gradient Descent works if the cost function decrease at each step

Convergence:

How to know if a function is converged or not?

- Cost function is smaller than a predefined threshold
- After a big enough number of step
- Cost function decreased less than a predefine threshold

Summarization:

- 1. Calculate the cost function
- 2. Select random value for coefficient a,b
- 3. Step by step modify a, b such as the cost function is decreased While (not converged)

do

$$a \coloneqq a - \frac{\partial}{\partial_a} E(a)$$
 $b \coloneqq b - \frac{\partial}{\partial_b} E(b)$

Multiple Input Representation

Example:

Consider the same example, but with more inputs

Size (m ²)	N ⁰ of floors	N ⁰ of rooms	Price (billion VND)
30	3	6	2.5
43	4	8	3.4
25	2	3	1.8
51	4	9	4.5
40	3	5	3.2
20	1	2	1.6

- $x^{(i)}$: the input of ith training data
- $\chi_{j}^{(i)}$: the component j of ith training data

Matrix representation:

$$y = h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$
$$x = \begin{bmatrix} 1 \\ x_1 \\ \dots \\ x_m \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_m \end{bmatrix}$$

$$h(x) = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 \dots \theta_m \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \dots \\ x_m \end{bmatrix} = \theta^T x$$

Multiple Input Representation

Cost Function:

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2$$

Start with random value of θ , step by step modify θ in order to decrease the cost function

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial_{\theta_j}} E(\theta)$$

$$\frac{\partial}{\partial_{\theta_j}} E(\theta) = \frac{1}{2m} \sum_{i=1}^m \frac{\partial}{\partial_{\theta_j}} (\theta^T x^{(i)} - y^{(i)})^2$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)}) x_{j}^{(i)}$$

Start with random value of θ , step by step modify θ in order to decrease the cost function

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial_{\theta_j}} E(\theta)$$

$$\frac{\partial}{\partial_{\theta_j}} E(\theta) = \frac{1}{2m} \sum_{i=1}^m \frac{\partial}{\partial_{\theta_j}} (\theta^T x^{(i)} - y^{(i)})^2$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)}) x_{j}^{(i)}$$

Normal Equations

Linear Regression:

Minimize the value of the cost function:

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2$$

Normal Equations:

Solve the following equation to find out the optimized value of $\boldsymbol{\theta}$

$$\frac{\partial}{\partial_{\theta}} E(\theta) = 0$$

Normal Equations

Linear Regression:

Minimize the value of the cost function:

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2$$

Normal Equations:

Solve the following equation to find out the optimized value of $\boldsymbol{\theta}$

$$\frac{\partial}{\partial_{\theta}} E(\theta) = 0 \qquad \forall \ j \in (0, 1, ..., n), \frac{\partial}{\partial_{\theta_j}} E(\theta) = 0$$

Normal Equations

Solution:

Given a training set of m training example, each contain n inputs, we have the matrix X (m,n+1) of inputs and vector of output Y

$$X = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} & \dots & x_n^{(2)} \\ & \dots & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\$$

Solution of normal equations is:

$$\theta = (X^T X)^{-1} X^T Y$$

Homework

Write a program in (Matlab/C++)to implement gradient descent algorithm for the following training data with different learning method: batch learning, stochastic and mini-batch, normal equation. Send your code and report on what do you see from the result to my email before 20 October 2016

Size (m²)	N ⁰ of floors	N ⁰ of rooms	Price (billion VND)
30	3	6	2.5
43	4	8	3.4
25	2	3	1.8
51	4	9	4.5
40	3	5	3.2
20	1	2	1.6

Polynomial Regression

Polynomial Regression Output is an polynomial function of the input For example

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_n x^n$$

Linear Regression

References

<u>http://openclassroom.stanford.edu/MainFolder/VideoPage.php?co</u> <u>urse=MachineLearning&video=02.4-LinearRegressionl-</u> <u>GradientDescent&speed=100</u> Objective: Scale all features to the same scale, in order to have easier computation Popular scale : [0,1],[-0.5,0.5]

x=x/max (x)
c= mean (x) x=x-c/max(x) =>