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Example:

Given data of prices of houses with size from 25-30 m2 and their 
location. Predict if a house is on Thanh Xuan district or Hoan Kiem
district base on it price.

y=0 => Thanh Xuan (negative)

y=1 => Hoan Kiem (positive)

Price (b.VND) Location

2.5 Thanh Xuan

3.5 Thanh Xuan

5.6 Hoan Kiem

2.2 Thanh Xuan

6.9 Hoan Kiem

9.6 Hoan Kiem

{0,1}y
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Classification with linear regression???

Location

Price

1

0

0.5
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 Linear regression is not a good choice for classification problem

Need a more suitable hypothesis such as:

=> 

g(z): sigmoid function or logistic 
function
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Classification => Logistic Regression

Logistic Function

θTx

y=h(x)
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Interpretation of Hypothesis output

h(x) can be considered as the probability that output y =1 with a 
given value of input x

h(x)=0.65 => there is 65%  chance that the house is locate at Hoan
kiem district
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Example of Image Classification using Caffe

http://demo.caffe.berkeleyvision.org/

http://demo.caffe.berkeleyvision.org/
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Example:

Calulate the output value with following coefficient

Θ0 = Θ1=0;

Θ0 =0.5 Θ1=0.7;

Price (b.VND) Location

2.5 Thanh Xuan

3.5 Thanh Xuan

5.6 Hoan Kiem

2.2 Thanh Xuan

6.9 Hoan Kiem

9.6 Hoan Kiem
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Decision Boundary
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Decision Boundary
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Decision Boundary
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Cost Function

Linear Regression:
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Logistic Regression Cost function
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Logistic Regression Cost function
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Gradient Descent for logistic regression:

Given the cost function

Update θ until convergence:
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Exercise:
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Solution:
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Exercise:

Starting with θ0 and θ1 equal to 0. α =0.001. Calculate the value of 
coefficient after first iteration with batch gradient descent 

Price Location Output Value

2.5 Thanh Xuan 0

3.5 Thanh Xuan 0

5.6 Hoan Kiem 1

2.2 Thanh Xuan 0

6.9 Hoan Kiem 1

9.6 Hoan Kiem 1
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Exercise:

Starting with θ0 and θ1 equal to 0. α =0.01, Regularization term 
lamda =10. Calculate the value of coefficient after first iteration 
using gradient

Price Location Output Value

2.5 Thanh Xuan 0

3.5 Thanh Xuan 0

5.6 Hoan Kiem 1

2.2 Thanh Xuan 1

6.9 Hoan Kiem 0

9.6 Hoan Kiem 1
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Logistic Regression: Minimize the cost function

Gradient Descent: step by step modify the coefficients θ such as 
this modification reduce the cost function

Newton’s method shares the same idea with normal equation 
(linear regression): finding the coefficients θ as 

( ) ( ) ( ) ( )

1

1
( ) [ log ( ) (1 ) log(1 ( )]

m
i i i i

i

E y h x y h x
m

 


    

: ( )

j

j j E


   


 


( ) ( ) 0E J


 


 




Newton’s Method

25

θ

J(θ)

θ0θ2 θ1θ3
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Start with random value of coefficient θ0 and then step by step 
update θ, until E’(θ) reaches 0, or E(θ) reaches its minimum

While  J(θ)!=0

{ 

- Calculate the tangent line of J(θ) at θt

- Find the cross point of tangent line with the θ axis, called θt+1

- Update θt to θt+1

}
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Start with random value of coefficient θ0 and then step by step 
update θ

While  J(θ)!=0

{ 

- Calculate the tangent line of J(θ) at θt

- Find the cross point of tangent line with the θ axis, called θt+1

- Update θt to θt+1

}
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Where: H is Hessian Matrix,            is a derivative vector
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Which is the best option checking if Newton’s method has 
converged?

1. Plot h(x) as a function of x, and check if it fits the data well.

2. Plot E(θ) as a function of θ and check if it has reach a minimum

3. Plot θ as a function of the number of iteration and check if it 
has stop decreasing (or decreasing only a tiny  amount per 
iteration)

4. Plot E(θ) as a function of number of iteration and check if it has 
stop decreasing (or decreasing only a tiny  amount per 
iteration)
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Newton’s Method vs Gradient Descent

Gradient Descent Newton’s Method

Implementation Simpler
Need to chose 
parameter

More complex
No

Convergence Speed Need more Iteration
Computation cost of 
each iteration is 
cheep 0(n)
n:number of features

Less iteration
Each iteration is 
more expensive 0(n3)
N:number of 
features

Application Use when n is large 
(n>1000)

Use when n is small
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Exercise:

Given the following data, compute the Hessian Matrix and the 
derivative vector at θ0= θ1=0

Price (b.VND) Location

2.5 Thanh Xuan

3 Thanh Xuan

6 Hoan Kiem

2 Thanh Xuan

7 Hoan Kiem

10 Hoan Kiem
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