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Classification

Example:

Given data of prices of houses with size from 25-30 m? and their
location. Predict if a house is on Thanh Xuan district or Hoan Kiem
district base on it price.

2.5 Thanh Xuan Yy € {O, 1}

3.9 Thanh Xuan y=0 => Thanh Xuan (negative)

5.6 Hoan Kiem y=1 => Hoan Kiem (positive)
2.2 Thanh Xuan
6.9 Hoan Kiem

9.6 Hoan Kiem



Classification

Classification with linear regression???
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Classification

—> Linear regression is not a good choice for classification problem

h(x) =60"x

Need a more suitable hypothesis such as:

0 <h(x) <1
- h(x)=g(0'x) where g(z)= 1 -
1+e
h(X) — 1 g(z): sigmoid func;ciontc?r logistic

1+e77”



Classification

Classification => Logistic Regression
Logistic Function

y=h(x)




Classification

Interpretation of Hypothesis output

h(x) can be considered as the probability that output y =1 with a
given value of input x

h(x)=0.65 => there is 65% chance that the house is locate at Hoan
kiem district



Classification

Example of Image Classification using Caffe
http://demo.caffe.berkeleyvision.org/

Masimally accurate Maximally speific
structure
housing

building

wheeled vehicle

vehicle

0.7642

0.39733

0.39136

0.38885

0.38175


http://demo.caffe.berkeleyvision.org/

Example:

Calulate the output value with following coefficient

0, = 0,=0;
0,=0.5 0,=0.7;

Classification

2.5
3.5
5.6
2.2
6.9
9.6

Thanh Xuan
Thanh Xuan
Hoan Kiem
Thanh Xuan
Hoan Kiem
Hoan Kiem
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Classification

Decision Boundary

Logistic regression 11 =
ho(z) = (0" x)
9(2) = 7= = - >

Suppose predict “y = 1“if hg(z) > 0.5
g(z) =2 0.5 Whenz>0
So hg(x) = g(6Tx) = 0.5 When 87x > 0

predict “y = 0“ if hg(z) < 0.5
g(z2) £05 Whenz>0
Sohg(x) = g(8Tx) <05  When8Tx <0
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Classification

Decision Boundary

hg(x) = g(0g + 6121 + O229)
1

Decision : :
boundary -3 1 1

Predict “y = 1“if —34+x1 +22 >0



Classification

Decision Boundary
X;, 1 0 0
x XX v hg(g;) — 9(90 + 60121 + 029
X oéb O / Decision ‘|‘93(E% + 94$%)
fa OO >/ %, boundary 1 1

Q

«  Predict“y =1 —1+22+22>0

> hg(iL‘) == 9(90 91$1 92{132 93{13%
+94$%1L‘2 + 9521?%&?% + Qﬁxi’mg + ... )
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Classification

Cost Function
Linear Regression:

£0) = (, () -y’

1 1=1
h(X) = ——
1+e

“non-convex” AN “convex”




Classification

Logistic Regression Cost function

E(he (X)1 Y) — {

Ify=1

~log(h, (x) if y=1 }

~log(l—h,(x))if y=0

fy=0

= ——
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Classification

Logistic Regression Cost function

E(he(x)’y):{ ~log(h, (x) if y=1 }

~log(l—h,(x))if y=0

E(he (X)’ Y) =Y |Og(h9 (X)) - (1_ Y) Iog(l— he (X))
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Classification

Gradient Descent for logistic regression:
Given the cost function

E(0) ==Y [y log hy (x?) + (1 y*) log(@—h, (x")]

Update O until convergence:

| 0
0;:=0,~a——E(0)

0;
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Classification

Exercise:

Calculate ﬂ E (6’)
00,

0 0o 1 1 2
2) = _ e
0z 9(2) ozl+e? (l+e7?)? )

-1 e ") = 9()-9(2)
+€

1+e

glog(z) 1 — f(g(z)) _d (g)

0 Z 5

; z 9 z
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Solution:

Classification

5 1y .
_ h X(l) _ oy X(_l)
ae m ;( 6?( ) y ) j

j
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Exercise:

Classification

Starting with 6, and 6, equal to 0. a =0.001. Calculate the value of

coefficient after first iteration with batch gradient descent

2.5
3.5
0.6
2.2
6.9
9.6

Thanh Xuan
Thanh Xuan
Hoan Kiem
Thanh Xuan
Hoan Kiem
Hoan Kiem

0

m kL O Rk O

21



Homework

Exercise:

Starting with 6, and 6, equal to 0. a =0.01, Regularization term
lamda =10. Calculate the value of coefficient after first iteration
using gradient

2.5 Thanh Xuan 0
3.5 Thanh Xuan 0
5.6 Hoan Kiem 1
2.2 Thanh Xuan 1
6.9 Hoan Kiem 0
0.6 Hoan Kiem 1
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Newton’s Method

Logistic Regression: Minimize the cost function

E(0) ==Y [y og h, (x?) + (1 y*) log(@—h, (x")]

Gradient Descent: step by step modify the coefficients 0 such as
this modification reduce the cost function

| 0
0;:=0,~a——E(0)

0;

Newton’s method shares the same idea with normal equation
(linear regression): finding the coefficients 0 as

a —_ —
—E(0)=3(0)=0

9 24



Newton’s Method

J(6)
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Newton’s Method

Start with random value of coefficient 8° and then step by step
update 0, until E’(0) reaches 0, or E(0) reaches its minimum

While J(0)!=0

{

- Calculate the tangent line of J(0) at 0t

- Find the cross point of tangent line with the 0 axis, called 0!
- Update 6t to Ot+1

}

26



Newton’s Method

I0) 1t

9 36%) =10y =20

0 A
J(6°)

)(6°)
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Newton’s Method

Start with random value of coefficient 68° and then step by step
update O

While J(0)!=0

{
- Calculate the tangent line of J(0) at 0t

- Find the cross point of tangent line with the 0 axis, called 0t
- Update 6t to Ot+1
10) _ i E(0)

316" E'(6)

9t+1 _ Ht .
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t+1

Newton’s Method

_gt J(¢) _o_ El"(é’t)
J'(6") E (6")
=0'-H™A,E

Where: H is Hessian Matrix, A E is a derivative vector

H
H

HnO

00

10

HOl
Hll

Hnl

HOn

H

1n

nn

where H; =

0°E
04,0,

i

A,E
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A,E

_1
m

Newton’s Method

:%Zml:(h (X(i))_ y(i))x(i)

Zm:[h(x(i))(l— h(x(i))x(i) (X(i))T }

=1
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Newton’s Method

Which is the best option checking if Newton’s method has

converged?

1. Plot h(x) as a function of x, and check if it fits the data well.

2. Plot E(O) as a function of 0 and check if it has reach a minimum

3. Plot 6 as a function of the number of iteration and check if it
has stop decreasing (or decreasing only a tiny amount per
iteration)

4. Plot E(O) as a function of number of iteration and check if it has

stop decreasing (or decreasing only a tiny amount per
iteration)
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Newton’s Method

Newton’s Method vs Gradient Descent

_ Gradient Descent Newton’s Method

Implementation Simpler More complex
Need to chose No
parameter

Convergence Speed Need more Iteration Less iteration
Computation cost of Each iteration is
each iteration is more expensive 0(n3)
cheep 0(n) N:number of
n:number of features features

Application Use when nislarge Use when n is small
(n>1000)

32



Newton’s Method

Exercise:

Given the following data, compute the Hessian Matrix and the
derivative vector at 6,= 6,=0

2.5 Thanh Xuan
3 Thanh Xuan
6 Hoan Kiem
2 Thanh Xuan
{ Hoan Kiem

10 Hoan Kiem
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