

Lecture 4

Model Evaluation

Dr. Le Huu Ton

Hanoi, 2017

Model Evaluation

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train	test
-------	------

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

train validation test

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

- **Training Dataset**: The sample of data used to fit the model.
- Validation Dataset: The sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters. The evaluation becomes more biased as skill on the validation dataset is incorporated into the model configuration.
- **Test Dataset**: The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset.

Evaluation of Regression Model

- Mean Absolute Error.
- Mean Squared Error.
- R Square (R²)

Mean Absolute Error: is the sum of the absolute differences between predictions and actual values

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y^i - h(x^i)|$$

Mean Square Error: measures the average of the squares of the errors- the difference between the real value and the predicted one

$$MSE = \frac{1}{m} \sum_{i=1}^{m} \left(y^i - h(x^i) \right)^2$$

R Square: provides an indication of the goodness of fit of a set of predictions to the actual values. In statistical literature, this measure is called the coefficient of determination.

The total sum of squares (proportional to the variance of the data):

$$SS_{tot} = \sum_{i=1}^{m} (y^i - \bar{y})^2$$

The sum of squares of residuals, also called the residual sum of squares

$$SS_{res} = \sum_{i=1}^{m} \left(y^i - h(x^i) \right)^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

- Confusion matrix
- Recall
- Precision
- Specificity
- Accuracy
- F-score
- Root mean squared error (RMSE)

 Confusion matrix: a confusion matrix, also known as an error matrix, is a specific table layout that allows visualization of the performance of an algorithm

		Actual class		
		Cat	Dog	Rabbit
Predicted class	Cat	5	2	0
	Dog	3	3	2
	Rabbit	0	1	11

• Precision, Recall, Accuracy and Specificity

		Predicted Label		
		Positive	Negative	
Known Label	Positive	True Positive (TP)	False Negative (FN)	
	Negative	False Positive (FP)	True Negative (TN)	

selected elements

Measure	Formula	Intuitive Meaning
Precision	TP / (TP + FP)	The percentage of positive predictions that are correct.
Recall / Sensitivity	TP / (TP + FN)	The percentage of positive labeled instances that were predicted as positive.
Specificity	TN / (TN + FP)	The percentage of negative labeled instances that were predicted as negative.
Accuracy	(TP + TN) / (TP + TN + FP + FN)	The percentage of predictions that are correct.

• F-score:

$$F = 2 * \frac{precision * recall}{precision + recall}$$

References

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?c ourse=MachineLearning https://en.wikipedia.org/wiki/Activation_function https://mattmazur.com/2015/03/17/a-step-by-stepbackpropagation-example/