

Lecture 5

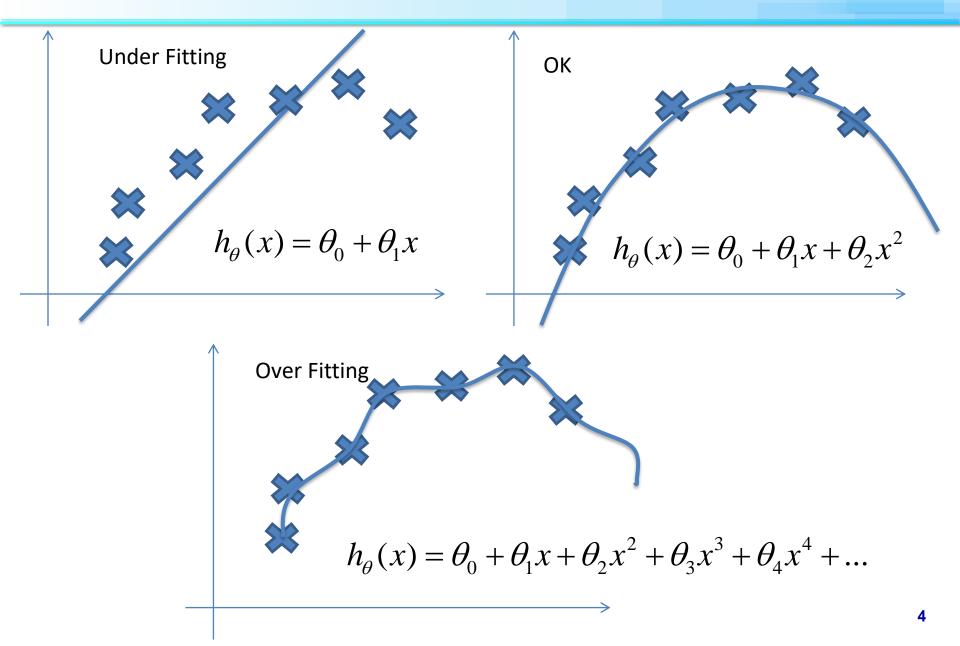
Regularization

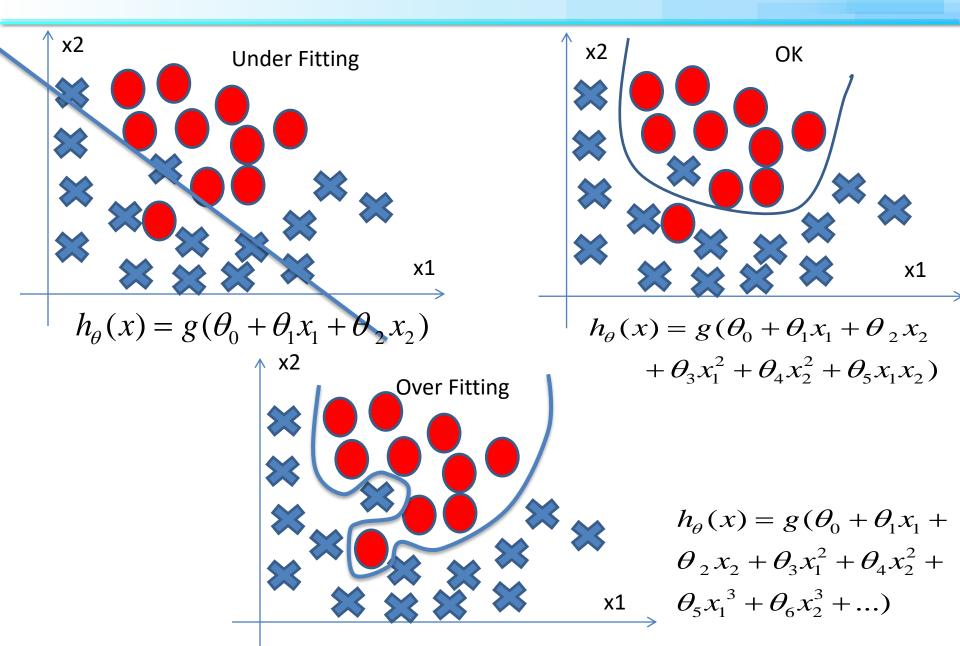
Dr. Le Huu Ton

Hanoi, 2018

Regularization with Linear Regression

Regularization with Linear Regression





Under fitting:

Under fitting refers to a model that can neither model the training data not generalize to new data.

An under fit machine learning model is not a suitable model and will be obvious as it will have poor performance on the training data.

Over Fitting :

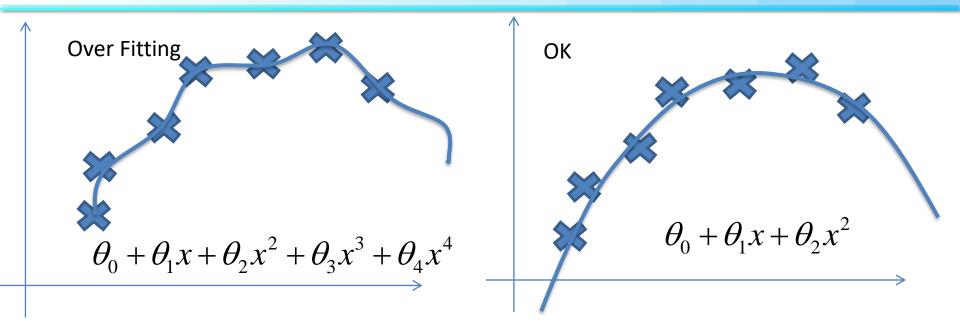
Overfitting happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance on the model on new data.

Regularization with Linear Regression

Regularization

Regularization is a *technique* used in an attempt to solve the **overfitting** problem.

Regularization is done by reduce the magnitude of some coefficient $\boldsymbol{\theta}_j$



Regularization: reduce value of θ_3 and θ_4 Minimize the cost function

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + 9999\theta_3 + 9999\theta_4$$
$$= > \theta_3 \approx 0, + \theta_4 \approx 0$$

Regularization

Small values of coefficients $\theta_0, \theta_1, \dots \theta_n$ \Rightarrow Simpler hypothesis h(x) \Rightarrow Less prone to overfitting

<u>Regularization</u>: Add a regularization component into the cost function

$$E(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Regularization component

Regularization

Question:

What if λ is set by a extremely large number (too large for our problem), which of the following statement is correct:

- 1. The algorithm works fine
- 2. Algorithm fail to eliminate overfitting
- 3. Algorithm results in under fitting
- 4. Gradient descent will fail to converge

Regularization with Linear Regression

Regularization:

Minimize the Cost Function

$$E(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Gradient descent:

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial_{\theta_j}} E(\theta)$$

Regularization with Linear Regression

Gradient Descent:

Repeat until converged:

$$\begin{cases} \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_0^i \end{cases}$$

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_j^i + \frac{\alpha \lambda}{m} \theta_j \forall j = 1: n$$

$$\theta_j \coloneqq \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_j^i \quad \forall j = 1: n$$

Normal Equation without regularization:

$$\theta = (X^T X)^{-1} X^T Y$$

Normal Equation with regularization

$$\theta = (X^T X + \lambda \begin{vmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 \\ \dots & \dots & 1 & \dots \\ 0 & 0 & 0 & 1 \end{vmatrix})^{-1} X^T Y$$

Regularization with Linear Regression

Logistic Regression: Minimize the cost function

$$E(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Gradient descent:

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial_{\theta_j}} E(\theta)$$

Gradient Descent:

Repeat until converged:

$$\begin{cases} \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_0^i \end{cases}$$

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m [(h(x^{(i)}) - y^{(i)})x_0^i] - \frac{\lambda}{m} \theta_j \forall j = 1:n$$

$$\theta_j \coloneqq \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_0^i \quad \forall j = 1: n$$

18

Newton's Method with Regularization

$$\theta^{t+1} \coloneqq \theta^t - H^{-1} \Delta_{\theta} E$$

$$\Delta_{\theta} E = \begin{vmatrix} \frac{\partial}{\partial_{\theta_0}} E(\theta) \\ \dots \\ \frac{\partial}{\partial_{\theta_n}} E(\theta) \end{vmatrix} = \begin{vmatrix} \frac{1}{m} \sum (h(x^{(i)}) - y^{(i)}) x_0^i \\ \frac{1}{m} \sum (h(x^{(i)}) - y^{(i)}) x_1^i - \frac{\lambda}{m} \theta_1 \\ \dots \\ \frac{1}{m} \sum (h(x^{(i)}) - y^{(i)}) x_n^i - \frac{\lambda}{m} \theta_n \end{vmatrix}$$

Hessian Matric:

$$H = \frac{1}{m} \sum_{i=1}^{m} \left[h(x^{(i)})(1 - h(x^{(i)})x^{(i)}(x^{(i)})^T \right] + \lambda \begin{vmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 \\ \dots & \dots & 1 & \dots \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

When using regularized logistic regression, which of these is the best way to monitor whether gradient descent is working correctly?

- $\bigcirc \mathsf{Plot} \left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 y^{(i)}) \log(1 h_{\theta}(x^{(i)}))\right] \text{ as a function of the number of iterations, and make sure it's decreasing.}$
- $\bigcirc \frac{\mathsf{Plot} \left[\frac{1}{m}\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 y^{(i)}) \log(1 h_{\theta}(x^{(i)}))\right] \frac{\lambda}{2m}\sum_{j=1}^{n} \theta_{j}^{2}}{\mathsf{function of the number of iterations, and make sure it's decreasing.}}$
- $O_{\text{function of the number of iterations, and make sure it's decreasing.}}^{\text{Plot} \left[\frac{1}{m}\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 y^{(i)}) \log(1 h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m}\sum_{j=1}^{n} \theta_{j}^{2} \text{ as a}}$
- $O_{it's decreasing.}^{n}$ as a function of the number of iterations, and make sure

References

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?c ourse=MachineLearning

Andrew Ng Slides:

https://www.google.com.vn/url?sa=t&rct=j&q=&esrc=s&source=w eb&cd=2&cad=rja&uact=8&sqi=2&ved=0ahUKEwjNt4fdvMDPAhXI n5QKHZO1BSgQFggfMAE&url=https%3A%2F%2Fdatajobs.com%2F data-science-repo%2FGeneralized-Linear-Models-%5BAndrew-Ng%5D.pdf&usg=AFQjCNGq37q2uVFcpGhNqH-5KZSIJ_HSxg&sig2=vnCEvyvKQGCuryttAPcokw&bvm=bv.134495766 ,d.dGo