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Chapter 2  Dielectric Waveguides 
and Optical Fibers

Charles Kao, Nobel Laureate (2009)
Courtesy of the Chinese University of Hong Kong
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“The introduction of optical fiber systems will revolutionize the communications network. The 
low-transmission loss and the large bandwidth capability of the fiber systems allow signals to be transmitted for 
establishing communications contacts over large distances with few or no provisions of intermediate 
amplification.” 
[Charles K. Kao (one of the pioneers of glass fibers for optical communications) Optical Fiber Systems: Technology, Design, and 
Applications (McGraw-Hill Book Company, New York, USA, 1982), p. 1]

Dielectric Waveguides and Optical Fibers

Courtesy of the Chinese University of Hong Kong

Charles Kao at the naming ceremony of Minor Planet 
(3463)  "Kaokuen" by Nanjing's Purple Mountain 
Observatory in July 1996. Charles Kao and his 
colleagues carried out the early experiments on optical 
fibers at the Standard Telecommunications 
Laboratories Ltd (the research center of Standard 
Telephones and Cables) at Harlow in the United 
Kingdom, during the 1960s. He shared the Nobel Prize 
in 2009 in Physics with Willard Boyle and George 
Smith for "groundbreaking achievements concerning 
the transmission of light in fibers for optical 
communication." In a milestone paper with George 
Hockam published in the IEE Proceedings in 1966 they 
predicted that the intrinsic losses of glass optical fibers 
could be much lower than 20 dB/km, which would allow 
their use in long distance telecommunications. Today, 
optical fibers are used not only in  telecommunications 
but also in various other technologies such as 
instrumentation and sensing. From 1987 to his 
retirement in 1996, professor Kao was the Vice 
Chancellor of the Chinese University of Hong 
Kong.(Courtesy of the Chinese University of Hong 
Kong.)
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Light is guided along a water jet as demonstrated 
by Jean-Daniel Colladon. This illustration was 
published in La Nature, Revue des Sciences, in 
1884 (p. 325).  His first demonstration was around 
1841. (Comptes Rendes, 15, 800-802, Oct. 24, 
1842). A similar demonstration was done by John 
Tyndall for the Royal Institution in London in his 
1854 lecture. Apparently, Michael Faraday had 
originally suggested the experiment to John 
Tyndall though Faraday himself probably learned 
about it either from another earlier 
demonstration or through Jean-Daniel Colladon's 
publication. Although John Tyndall is often 
credited with the original discovery of a water-jet 
guiding light, Tyndall, himself, does not make that 
claim but neither does he attribute it to someone 
else. (The fountain, courtesy of Conservatoire 
Numérique des Arts et Métiers, France; Colladon's 
portrait, courtesy of Musée d'histoire des 
sciences, Genève, Switzerland.)

Reference: Jeff Hecht, "Illuminating the Origin of Light 
Guiding," Optics & Photonics News, 10, 26, 1999 and his 
wonderful book The City of Light (Oxford University Press, 
2004) describe the evolution of the optical fiber from the 
water jet experiments of Colladon and Tyndall to modern 
fibers with historical facts and references.

1841

Jean-Daniel Colladon and the Light Guiding in a Water Jet
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Narinder Singh Kapany

Narinder Singh Kapany was born in 
Punjab in India, studied at the Agra 
University and then obtained his PhD from 
the Imperial College of Science and 
Technology, University of London in 1955. 
He held a number of key-positions in both 
academia and industry, including a 
Regents Professor at the University of 
California, Berkeley, the University of 
California, Santa Cruz (UCSC), the 
Director of the Center for Innovation and 
Entrepreneurial Development at UCSC. 
He made significant contributions to 
optical glass fibers starting in 1950s, and 
essentially coined the term fiber optics in 
the 1960s. His book Fibre Optics: 
Principles and Applications, published in 
1967, was the first in optical fibers. 
(Courtesy of Dr. Narinder S. Kapany)

5



A Century and Half Later 

Light has replaced copper in communications. Photons have 
replaced electrons. 

Will “Photonics Engineering” replace Electronics 
Engineering?
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WAVELENGTH DIVISION MULTIPLEXING: WDM
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Planar Optical Waveguide

A planar dielectric waveguide has a central rectangular region of higher 
refractive index n

1
 than the surrounding region which has a refractive 

index n
2
. It is assumed that the waveguide is infinitely wide and the 

central region is of thickness 2a. It is illuminated at one end by a nearly 
monochromatic light source.
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Light waves zigzag along the guide. Is that really what happens?

Optical Waveguide
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A light ray traveling in the guide must interfere constructively with itself to 
propagate successfully. Otherwise destructive interference will destroy the 
wave. E is parallel to x. (λ

1
 and k

1
 are the wavelength and the propagation 

constant inside the core medium n
1
 i.e. λ

1
 = λ/n

1
.)

Waves Inside the Core
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Two arbitrary waves 1 and 2 that are initially in phase must remain in 
phase after reflections. Otherwise the two will interfere destructively 

and cancel each other.

Waves Inside the Core
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k
1
 = kn

1
 = 2πn

1
/λ,

Δφ(AC) = k
1
(AB + BC) − 2φ = m(2π)  

BC = d/cosθ and AB = BCcos(2θ)

AB + BC = BCcos(2θ) + BC = BC[(2cos2θ −1) + 1] =  2dcosθ

k1[2dcosθ] − 2φ = m(2π)

Waveguide condition

Waveguide Condition
and Modes

m = 0, 1, 2, 3 etc
Integer

“Mode number”
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Propagation constant along the guide

Transverse Propagation constant
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Waveguide Condition and Waveguide Modes

To get a propagating wave along a guide you must have 
constructive interference. All these rays interfere with each 
other. Only certain angles are allowed . Each allowed angle 
represents a mode of propagation.
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m = integer, n1 = core refractive index, θm is the 
incidence angle, 2a is the core thickness.

Minimum θm and maximum m must still satisfy TIR.

There are only a finite number of modes. 

Propagation along the guide for a mode m is 

Waveguide Condition
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Waveguide Condition and Modes

To get a propagating wave along a guide you must have 
constructive interference. All these rays interfere with each 
other. Only certain angles are allowed . Each allowed angle 
represents a mode of propagation.
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Modes in a Planar Waveguide

E(y,z,t) = E
m
(y)cos(ωt − β

m
z)

Traveling wave along z
Field pattern along y

We can identify upward (A) and downward (B) traveling waves in the guide which interfere to set 
up a standing wave along y and a wave that is propagating along z. Rays 2 and 2′ belong to the 

same wave front but 2′ becomes reflected before 2. The interference of 1 and 2′ determines the 
field at a height y from the guide center. The field E(y, z, t) at P can be written as
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m = integer, n1 = core refractive index, θm is the incidence 
angle, 2a is the core thickness. 

Modes in a Planar Waveguide: Summary

E(y,z,t) = E
m
(y)cos(ωt − β

m
z)

Traveling wave along z
Field pattern along y
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Left: The upward and downward traveling waves have equal but opposite wave 
vectors κ

m
 and interfere to set up a standing electric field pattern across the guide. 

Right: The electric field pattern of the lowest mode traveling wave along the guide. 
This mode has m = 0 and the lowest θ. It is often referred to as the glazing incidence 

ray. It has the highest phase velocity along the guide

Mode Field Pattern
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The electric field patterns of the first three modes (m = 0, 1, 2) 
traveling wave along the guide. Notice different extents of field 

penetration into the cladding

Modes in a Planar Waveguide
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Intermode (Intermodal or Modal) Dispersion

Schematic illustration of light propagation in a slab dielectric waveguide. 
Light pulse entering the waveguide breaks up into various modes which 

then propagate at different group velocities down the guide. At the end of 
the guide, the modes combine to constitute the output light pulse which is 

broader than the input light pulse.
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TE and TM Modes

Possible modes can be classified in terms of (a) transverse electric field (TE) 
and (b) transverse magnetic field (TM). Plane of incidence is the paper.

B⊥ is along − x, so that B⊥ = −B
xE⊥ is along x, so that E⊥ = E

x
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V-Number
All waveguides are characterized by a parameter called 

the V-number or normalized frequency

V < π/2, m = 0 is the only possibility and only the 
fundamental mode (m = 0) propagates along the dielectric 

slab waveguide: a single mode planar waveguide.

  

λ = λ
c
 for V = π/2   is the cut-off wavelength, and above 

this wavelength, only one-mode, the fundamental mode 
will propagate.
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Example on Waveguide Modes
Consider a planar dielectric guide with a core thickness 20 μm, n

1
 

= 1.455, n
2
 = 1.440, light wavelength of 900 nm. Find the modes

Waveguide
condition

TIR phase 
change φm for 

TE mode

Waveguide
condition

TE mode
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TE 
mode
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m 0 1 2 3 4 5 6 7 8 9

θ
m

89.2° 88.3° 87.5° 86.7° 85.9° 85.0° 84.2° 83.4° 82.6° 81.9°

δ
m
 (μm) 0.691 0.702 0.722 0.751 0.793 0.866 0.970 1.15 1.57 3.83

Critical angle θ
c
 = arcsin(n

2
/n

1
) = 81.77°

Highest
mode

m = 0
Fundamental

mode

Mode m, incidence angle θ
m

 and penetration δ
m

 for a planar dielectric waveguide 
with d = 2a = 20 μm, n

1
 = 1.455, n

2
 = 1.440 (λ = 900 nm)
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Number of Modes M

Waveguide
condition

One mode when  V < π/2 

Multimode when  V > π/2 
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Mode Field Width 2wo
E

cladding
(y′) = E

cladding
(0)exp(−α

cladding
y′)

Mode Field Width 2wo

Note: The MFW definition here is semiquantitive. A more rigorous approach needs to 
consider the optical power in the mode and how much of this penetrates the cladding. See 
optical fibers section.
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The slope of ω vs. β  is the group velocity vg

Waveguide Dispersion Curve
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The slope of ω vs. β  is the group velocity vg

Waveguide Dispersion Curve
Slope = Group Velocity

βm

ω
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Mode Group Velocities from Dispersion Diagram

The group velocity vg vs. ω for a planar dielectric guide with a core thickness (2a) 
= 20 μm, n

1
 = 1.455, n

2
 = 1.440. TE

0
, TE

1
 and TE

4

Group velocity vs. frequency or wavelength behavior 
is not obvious. For the first few modes, a higher 
mode can travel faster than the fundamental.
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A Planar Dielectric Waveguide with Many Modes

The group velocity vg vs. ω for a planar dielectric guide
Core thickness (2a) = 20 μm, n

1
 = 1.455, n

2
 = 1.440

[Calculations by the author]

ω

vg

0.5×1016 1.0×1016 1.5×10160

2.04

2.05

2.06

2.07

2.08

×108

c / n
2

c / n
1

(c/n
1
)sinθ

c
 = cn

2
/n

1
2

m = 0

m = 10

m = 20
m = 30 m = 40 m = 60

ΤΕ1 ωcutoff

Slower than 
fundamental

Not in the textbook
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Dispersion in the Planar Dielectric Waveguide with TE0 and TE1
(Near cut-off)

TE0

TE1

=
Broadened 
pulse

Output light 
pulse

Input
light
pulse

ω

vg

ωcutoff

c / n
2

c / n
1

Operating
frequency

ω1

vgmax

vgmin

vgmax ≈ c/n2

vgmin ≈ c/n1

Spread in 
arrival times

Dispersion

TE1

TE0

TE2

ω1 ω1

λ1 = 2πc/ω1

Not in the textbook
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A Planar Dielectric Waveguide with Many Modes

Multimode operation in which many modes propagate with different group 
velocities

vg vs. ω for a planar dielectric guide with a core thickness (2a) = 20 μm, n
1
 = 1.455, n

2
 = 1.440

[Calculations by the author]

ω

vg

0.5×1016 1.0×1016 1.5×10160

2.04

2.05

2.06

2.07

2.08

×108

c / n
2

c / n
1

(c/n
1
)sinθ

c
 = cn

2
/n

1
2

m = 0
m = 25
m = 35
m = 45
m = 55
m = 65

ω
cutoff

Operating
frequency

Range of group
velocities for 65 
modes

Not in the textbook

34



Dispersion in the Planar Dielectric Waveguide with Many Modes
Far from Cutoff

TEhighest

θc θc

c/n1
(c/n

1
)sinθ

c c/n

1

(Since n1 and n2 are only slightly 
different.)

ω

vg

c / 
n

1

(c/n
1
)sinθ

c

Operating
frequency

Range of group
velocities for 
65 modes

c / 
n

2

Not in the textbook
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TEhighest

θc

Dispersion in the Planar Dielectric Waveguide
Many Modes

=
Broadened 

pulse
Output
pulse

Very 
short 
input
pulse

ω2

ω2

θc
TE0

Δτ

Not in the textbook

(Since n1/n2 ≈ 1)
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How can  a higher mode such as TE1 or TE2 travel 
faster than the fundamental near cut-off?

Not in the textbook

The mode TE
1 

penetrates into the cladding where its velocity is 
higher than in the core. If penetration is large, as near cut-off, TE

1
 

group velocity along the guide can exceed that of TE
0
.

θ
c

Pe
n

et
ra

ti
o

n
 d

ep
th

 δ
m

Incidence angle θ
i

TE1 near cut-off

Fundamental 
mode
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The electric field of TE
0
 mode extends more into the cladding as the 

wavelength increases. As more of the field is carried by the cladding, the group 
velocity increases.

Group Velocity and Wavelength: Fundamental Mode
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Optical Fibers

The step index optical fiber. The central region, the core, has greater 
refractive index than the outer region, the cladding. The fiber has cylindrical 
symmetry. The coordinates r, φ, z  are used to represent any point P in the 

fiber. Cladding is normally much thicker than shown. 
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Meridional ray enters the fiber through the fiber axis and hence also crosses the fiber 
axis on each reflection as it zigzags down the fiber. It travels in a plane that contains 
the fiber axis.

Skew ray enters the fiber off the fiber axis and zigzags down the fiber without 

crossing the axis 
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Modes    LPlm 
Weakly guiding modes in fibers

Δ << 1       weakly guiding fibers

ELP = Elm(r,φ) expj(ωt − βlmz)

Traveling 
wave

Field
Pattern

E and B are 90o to each other and z  
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 Fundamental Mode is the LP
01

 mode: l = 0 and m = 1

The electric field distribution of the 
fundamental mode, LP

01
, in the 

transverse plane to the fiber axis z. The 
light intensity is greatest at the center of 

the fiber
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The electric field distribution of the fundamental mode in the transverse plane to the 
fiber axis z. The light intensity is greatest at the center of the fiber. Intensity patterns in 
LP

01
, LP

11
 and LP

21
 modes. (a) The field in the fundamental mode. (b)-(d) Indicative light 

intensity distributions in three modes, LP
01

, LP
11

 and LP
21

.
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LPlm

m = number of maxima along r starting from the core center. 
Determines the reflection angle θ

2l = number of maxima around a circumference

l - radial mode number
l - extent of helical propagation, i.e. the amount of skew ray 
contribution to the mode. 

ELP = Elm(r,φ) expj(ωt − βlmz)
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Optical Fiber Parameters

n = (n
1
 + n

2
)/2 = average refractive index

Δ =  normalized index difference
Δ = (n

1
 − n

2
)/n

1 
≈ (n

1
2 − n

2
2)/2

V-number

V  < 2.405 only 1 mode exists. Fundamental mode

V  < 2.405  or λ > λc  Single mode fiber

V  > 2.405 Multimode fiber

Number of modes
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Modes in an Optical Fiber

Normalized 
propagation constant

k = 2π/λ
Normalized propagation constant b vs. 
V-number for a step-index fiber for 
various LP modes

( 1.5 < V < 2.5)

46



Group Velocity and Group Delay

Consider a single mode fiber with core and cladding indices of 
1.4480 and 1.4400, core radius of 3 μm, operating at 1.5 μm. What 
are the group velocity and group delay at this wavelength?

1.5 < V < 2.5 

β = n
2
k[1 + bΔ]

k = 2π/λ = 4,188,790 m-1 and ω = 2πc/λ = 1.255757×1015 rad s-1

V = (2πa/λ)(n
1
2 − n

2
2 )1/2 = 1.910088

b = 0.3860859, and β  =  6.044796×106 m-1.

Increase wavelength by 0.1% and recalculate. Values in the table
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Group Velocity and Group Delay

The group delay  τg  over 1 km is 4.83 μs

Calculation → V k (m-1) ω (rad s-1) b β  (m-1)

λ = 1.500000 μm 1.910088 4188790 1.255757×1015 0.3860859 6.044818×106

λ′ = 1.50150 μm 1.908180 4184606 1.254503×1015 0.3854382 6.038757×106
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Mode Field Diameter (2w)

Gaussian Gaussian

Intensity ∝ vg×E(r)2

Note: 
Maximum set 
arbitrarily to 1
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Mode Field Diameter

 0.8 < V < 2.5

2w ≈ (2a)(2.6V)  1.6 < V < 2.4

Marcuse MFD Equation

Intensity ∝ vg×E(r)2
Note: 

Maximum set 
arbitrarily to 1

2w = Mode Field Diameter (MFD)
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Correction note p113

Applies to print version only; e-version is correct

Insert this 2 in Equation (2.3.7)
Insert this 2 as superscript on e 

in Figure 2.16
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Fraction of optical power 
within MFD =

Area of a circular thin strip (annulus) with 
radius r is 2πrdr. Power passing through 
this strip is proportional to 
E(r)2(2πr)dr

Intensity ∝ vg×E(r)2and

Mode Field Diameter (2w)
Not in the textbook
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86% of total 
power

Fraction of optical power 
within MFD =  86 %

This is the same as the fraction of optical power within a 
radius w from the axis of a Gaussian beam (See Chapter 1)

Mode Field Diameter (2w)
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Example: A multimode fiber
Calculate the number of allowed modes in a multimode step index 
fiber which has a core of refractive index of 1.468 and diameter 100 
μm, and a cladding of refractive index of 1.447 if the source 
wavelength is 850 nm.  

Solution
Substitute, a = 50 μm, λ = 0.850 μm, n

1
 = 1.468, n

2
 = 1.447 into the 

expression for the V-number, 

V = (2πa/λ)(n
1
2 − n

2
2)1/2 = (2π50/0.850)(1.4682 − 1.4472)1/2 

= 91.44.

Since V >> 2.405, the number of modes is

M ≈ V2/2 = (91.44)2/2 = 4181

which is large. 
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Example: A single mode fiber
What should be the core radius of a single mode fiber which has a 
core of n

1
 = 1.4680, cladding of n

2
 = 1.447 and it is to be used with 

a source wavelength of 1.3 μm?

Solution
For single mode propagation, V ≤ 2.405. We need, 

V = (2πa/λ)(n
1
2 − n

2
2)1/2 ≤ 2.405

or

[2πa/(1.3 μm)](1.4682 − 1.4472)1/2 ≤ 2.405 

which gives a ≤ 2.01 μm. 
Rather thin for easy coupling of the fiber to a light source or to 
another fiber; a is comparable to λ which means that the geometric 
ray picture, strictly, cannot be used to describe light propagation. 
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Example: Single mode cut-off wavelength

Calculate the cut-off wavelength for single mode operation for a fiber that has a core 
with diameter of 8.2 μm, a refractive index of 1.4532, and a cladding of refractive 
index of 1.4485. What is the V-number and the mode field diameter (MFD) for 
operation at λ = 1.31 μm?

Solution
For single mode operation, 

V = (2πa/λ)(n
1
2 − n

2
2 )1/2 ≤ 2.405

Substituting for a, n
1
 and n

2
 and rearranging we get,

λ > [2π(4.1 μm)(1.45322 − 1.44852)1/2]/2.405 = 1.251 μm
Wavelengths shorter than 1.251 μm give multimode propagation.

At λ = 1.31 μm,  

V = 2π[(4.1 μm)/(1.31 μm)](1.45322 − 1.44852)1/2 = 2.30 
Mode field diameter MFD 
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Solution (continued)
Mode field diameter MFD from the Marcuse Equation is

 2w = 9.30 μm

2w = (2a)(2.6/V) = 2(4.1)(2.6/2.30) = 9.28 μm

2w = 2a[(V+1)/V] = 11.8 μm This is for a planar waveguide, and the definition is 
different than that for an optical fiber

86% of total power is within this diameter
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Numerical Aperture NA

2α
max

 =  total acceptance angle 

 NA is an important factor in light launching designs into the optical fiber. 

Maximum acceptance angle 
αmax is that which just gives 
total internal reflection at the 
core-cladding interface, i.e. 
when α = αmax then θ = θc. Rays 
with α > αmax (e.g. ray B) 
become refracted and penetrate 
the cladding and are eventually 
lost.
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Example: A multimode fiber and total acceptance angle

A step index fiber has a core diameter of 100 μm and a refractive index of 1.480. The 
cladding has a refractive index of 1.460. Calculate the numerical aperture of the 
fiber, acceptance angle from air, and the number of modes sustained when the source 
wavelength is 850 nm.

Solution
The numerical aperture is

 NA = (n
1
2 − n

2
2)1/2 = (1.4802 − 1.4602)1/2 = 0.2425 or 25.3%

From, sinα
max

 = NA/n
o
 = 0.2425/1

Acceptance angle α
max

 = 14° 

Total acceptance angle 2α
max

 = 28°
V-number in terms of the numerical aperture can be written as, 

V = (2πa/λ)NA = [(2π50 μm)/(0.85 μm)](0.2425) = 89.62

The number of modes, M ≈ V2/2 = 4016

Normalized refractive index
Δ = (n

1
 − n

2
) / n

1
 = 0.0135 or 1.35%  
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Example: A single mode fiber

A typical single mode optical fiber has a core of diameter 8 μm and a refractive 
index of 1.460. The normalized index difference is 0.3%. The cladding diameter is 
125 μm. Calculate the numerical aperture and the total acceptance angle of the fiber. 
What is the single mode cut-off frequency λ

c
 of the fiber?

Solution

The numerical aperture

NA = (n
1
2 − n

2
2)1/2 = [(n

1
 + n

2
)(n

1
 − n

2
)]1/2

Substituting (n
1
 − n

2
) = n

1
Δ and (n

1
 + n

2
) ≈ 2n

1
, we get 

NA ≈ [(2n
1
)(n

1
Δ)]1/2 = n

1
(2Δ)1/2 = 1.46(2×0.003)1/2 = 0.113 or 11.3 %

The acceptance angle is given by 

sinα
max

 = NA/n
o
 = 0.113/1 or α

max
 = 6.5°, and 2α

max
 = 13°

The condition for single mode propagation is V ≤ 2.405 which corresponds 
to a minimum wavelength λ

c
 is given by 

λ
c
 = [2πaNA]/2.405 = [(2π)(4 μm)(0.113)]/2.405 = 1.18 μm

Wavelengths shorter than 1.18 μm will result in multimode operation.
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Dispersion = Spread of Information

• Intermode (Intermodal) Dispersion: Multimode fibers only

• Material Dispersion
Group velocity depends on Ng and hence on λ

• Waveguide Dispersion
Group velocity depends on waveguide structure

• Chromatic Dispersion
Material dispersion + Waveguide Dispersion

• Polarization Dispersion

• Profile Dispersion
Like material and waveguide dispersion. Add all 3
Material + Waveguide + Profile

• Self phase modulation dispersion
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Intermode Dispersion (MMF)

Group Delay τ = L / vg

(Since n1 and n2 are only slightly different)
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Intermode Dispersion (MMF)

Δτ/L ≈ 10 − 50 ns / km

Depends on length! 

θc θc
TE

0

TE
highest
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Intramode Dispersion (SMF)

Group Delay τ = L / vg

Group velocity vg  depends  on

Refractive index = n(λ)  Material Dispersion

V-number = V(λ) Waveguide Dispersion

Δ = (n1 − n2)/n1 = Δ(λ) Profile Dispersion

Dispersion in the fundamental mode
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Intramode Dispersion (SMF)
Chromatic dispersion in the fundamental mode

λ1

v
g1

v
g2

Δλ = λ2 − λ1

λ2
τ

g1 τ
g2

τ

Δλ

δ(t)

Δτ

Δτ = τ
g1 − τ

g2

DispersionChromatic 
spread

Definition of Dispersion Coefficient

OR

Output pulse 
dispersed
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Material Dispersion

Emitter emits a spectrum ∆λ of wavelengths.  

Waves in the guide with different free space wavelengths travel at different group 
velocities due to the wavelength dependence of n1. The waves arrive at  the end of the 
fiber at different times and hence result in a broadened output pulse.

D
m
 = Material dispersion coefficient, ps nm-1 km-1 
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Material Dispersion

D
m
 = Material dispersion coefficient, ps nm-1 km-1 

vg = c / Ng
Depends on the wavelengthGroup velocity
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Wave guide dispersion

b hence β depend on V and hence on λ

Normalized 
propagation constant

k = 2π/λ
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Waveguide Dispersion

Waveguide dispersion The group velocity vg(01) of the fundamental mode depends on 
the V-number, which itself depends on the source wavelength λ, even if n

1
 and n

2
 were 

constant. Even if n
1
 and n

2
 were wavelength independent (no material dispersion), we 

will still have waveguide dispersion by virtue of vg(01) depending on V and V 
depending inversely on λ.  Waveguide dispersion arises as a result of the guiding 
properties of the waveguide  which imposes a nonlinear ω vs. β

lm
 relationship.

Dw = waveguide dispersion coefficient

Dw depends on the waveguide structure, ps nm-1 km-1 
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Chromatic Dispersion

Material dispersion coefficient 
(D

m
) for the core material (taken 

as SiO
2
),  waveguide dispersion 

coefficient (D
w
) (a = 4.2 μm) 

and the total or chromatic 
dispersion coefficient D

ch
 (= D

m
 

+ D
w
) as a function of  free 

space wavelength, λ

Chromatic = Material + Waveguide
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What do Negative and Positive Dm mean?

λ1

12

λ2

t

λ1 v
g1

v
g2

λ2
t

Δλ = λ2 − λ1

1 2

λ1 λ2

Positive Dm

N
g2

 > N
g1 

Δτ = Positive

t

λ1
v

g1

v
g2

λ2t

Negative Dm

N
g2

 < N
g1 

Δτ = Negative

Negative Dm
Positive Dm

D
m

Silica glass Δτ
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Waveguide Dimension and Chromatic Dispersion

Waveguide dispersion depends on the guide properties
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Profile Dispersion

Group velocity vg(01) of the fundamental mode depends on Δ, 
refractive index difference.

Δ may not be constant over a range of wavelengths: Δ = Δ(λ)

D
p
 = Profile dispersion coefficient

D
p
 <  0.1 ps nm-1 km-1

Can generally be ignored 

NOTE
Total intramode (chromatic) dispersion  coefficient D

ch

D
ch

 = D
m
 + D

w
 + D

p

where D
m
, D

w
, D

p
 are material, waveguide and profile 

dispersion coefficients respectively
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Chromatic Dispersion

Dch = Dm + Dw + Dp

S0 = 
Chromatic 
dispersion 
slope at λ0

Chromatic 
dispersion is 
zero at λ = λ0
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Is dispersion really zero at λ0?
The cause of Δτ is the wavelength 

spread Δλ at the input
Δτ = f(Δλ)

= 0
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Polarization Dispersion
n different in different directions due to induced strains in fiber in 
manufacturing, handling and cabling. δn/n < 10-6

D
PMD

 = Polarization dispersion coefficient

Typically D
PMD

 = 0.1 − 0.5 ps nm-1 km-1/2 
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Self-Phase Modulation Dispersion : Nonlinear Effect
At sufficiently high light intensities, the refractive index of glass n′ is 

n′ = n + CI 

where C is a constant and I is the light intensity. The intensity of light 
modulates its own phase. 

What is the optical power that will 
give Δτ/L ≈  0.1 ps km-1?

Take C = 10-14 cm2 W-1

∴ ΔI ≈ (c/C)(Δτ/L) = 3×106 W cm-2 

or Δn  ≈ 3×10-6 

Given 2a ≈ 10 μm, A ≈ 7.85×10-7 cm2  

∴ Optical power ≈ 2.35 W in the 
core

In many cases, this dispersion will be less than 
other dispersion mechanisms
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Nonzero Dispersion Shifted Fiber
For Wavelength Division Multiplexing (WDM) avoid 4 wave mixing: cross talk.

We need dispersion not zero but very small in Er-amplifer band (1525-1620 nm)

D
ch

 = 0.1 − 6 ps nm-1 km-1.

Nonzero dispersion shifted fibers

Various fibers named after their dispersion 
characteristics. The range 1500 - 1600 nm is only 
approximate and depends on the particular 
application of the fiber.
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Dispersion Flattened Fiber

Dispersion flattened fiber example. The material dispersion coefficient (D
m
) for the 

core material and waveguide dispersion coefficient (D
w
)  for the doubly clad fiber 

result in a flattened small chromatic dispersion between λ
1
 and λ

2
.
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Nonzero Dispersion Shifted Fiber: More Examples

Nonzero dispersion shifted fiber (Corning)

Fiber with flattened 
dispersion slope 

(schematic)

0.6%

0.4%

80



Commercial Fibers for Optical Communications

Fiber Dch

ps nm-1 km-1

S0

ps nm-2 km-1

DPMD

ps km-1/2

Some attributes

Standard single mode,  
ITU-T G.652

17

(1550 nm)

≤ 0.093 < 0.5

(cabled)

Dch = 0 at λ0 ≈ 1312 nm, MFD = 8.6 - 9.5 μm at 1310 
nm. λc ≤1260 nm.

Non-zero dispersion shifted 
fiber, ITU-T G.655

0.1 − 6
(1530 nm)

< 0.05 
at 1550 nm

< 0.5

(cabled)

For 1500 - 1600 nm range. WDM application

MFD = 8 − 11 μm.

Non-zero dispersion shifted 
fiber, ITU-T G.656

2 − 14 < 0.045 
at 1550 nm

< 0.20

(cabled)

For 1460 - 1625 nm range. DWDM application. 
MFD = 7 − 11 μm (at 1550 nm). Positive Dch.  λc 
<1310 nm

Corning SMF28e+

(Standard SMF)

18

(1550 nm)

0.088 < 0.1 Satisfies G.652. λ0 ≈ 1317 nm, MFD = 9.2 μm (at 
1310 nm), 10.4 μm (at 1550 nm); λc ≤ 1260 nm.

OFS TrueWave RS Fiber 2.6 - 8.9

 

0.045 0.02 Satisfies G.655. Optimized for 1530 nm - 1625nm. 
MFD = 8.4 μm (at 1550 nm); λc ≤1260 nm.

OFS REACH Fiber 5.5 -8.9 0.045 0.02 Higher performance than G.655 specification. 
Satisfies G.656. For DWDM from 1460 to 1625 nm. 
λ0 ≤ 1405 nm. MFD = 8.6 μm (at 1550 nm)
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Single Mode Fibers: Selected Examples
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Dispersion Compensation

Total dispersion = DtLt + DcLc = (10 ps nm-1 km-1)(1000 km) +

 (−100 ps nm-1 km-1)(80 km) 

=  2000 ps/nm for 1080 km

Deffective = 1.9 ps nm-1 km-1
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Dispersion Compensation

Dispersion D vs. wavelength characteristics involved in dispersion compensation. Inverse dispersion 
fiber enables the dispersion to be reduced and maintained flat over the communication 
wavelengths. 
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Dispersion Compensation and Management

� Compensating fiber has higher attenuation. 
Doped core. Need shorter length

� More susceptible to nonlinear effects.
Use at the receiver end.

� Different cross sections. Splicing/coupling losses.

� Compensation depends on the temperature. 

� Manufacturers provide transmission fiber spliced to inverse 
dispersion fiber for a well defined D vs. λ
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Dispersion and Maximum Bit Rate

Return-to-zero (RTZ) bit rate or data rate. 

Nonreturn to zero (NRZ) bit rate = 2 RTZ bitrate
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NRZ  and  RTZ 
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Maximum Bit Rate B

A Gaussian output light pulse and some tolerable intersymbol interference 
between two consecutive output light pulses (y-axis in relative units). At time t 

=  σ  from the pulse center, the relative magnitude is e−1/2 = 0.607 and full 
width root mean square (rms) spread is Δτ

rms
 = 2σ. (The RTZ case)
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Dispersion and Maximum Bit Rate

Maximum Bit Rate Dispersion

Bit Rate × Distance is 

inversely proportional to dispersion

inversely proportional to line width of laser

(so, we need single frequency lasers!)
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Dispersion and Maximum Bit Rate

Maximum Bit Rate
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Optical Bandwidth

An optical fiber link for transmitting analog signals and the effect of dispersion in the 
fiber on the bandwidth, f

op
.
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Pulse Shape and Maximum Bit Rate
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Example: Bit rate and dispersion

Consider an optical fiber with a chromatic dispersion coefficient  8 ps km-1 nm-1 
at an operating wavelength of 1.5 μm. Calculate the bit rate distance product 
(BL), and the optical and electrical bandwidths for a 10 km fiber if a laser diode 
source with a FWHP linewidth Δλ

1/2
 of 2 nm is used. 

Solution

For FWHP dispersion,

Δτ
1/2

/L = |D
ch

|Δλ
1/2

  = (8 ps nm-1 km-1)(2 nm) = 16 ps km-1

Assuming a Gaussian light pulse shape, the RTZ bit rate × distance 
product (BL) is

BL = 0.59L/Δτ
1/2

 = 0.59/(16 ps km-1) =  36.9 Gb s-1 km

The optical and electrical bandwidths for a 10 km fiber are

f
op

 = 0.75B = 0.75(36.9 Gb s-1 km) / (10 km) = 2.8 GHz

f
el
 = 0.70f

op
 = 1.9 GHz
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Graded Index (GRIN) Fiber

(a) Multimode step 
index fiber. Ray 
paths are 
different so that 
rays arrive at 
different times. 

(b) Graded index 
fiber. Ray paths 
are different but 
so are the 
velocities along 
the paths so that 
all the rays 
arrive at the 
same time.
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(a) A ray in thinly stratifed medium becomes refracted as it 
passes from one layer to the next upper layer with lower n 
and eventually its angle satisfies TIR. 

(b) In a medium where n decreases continuously the path of 
the ray bends continuously.

Graded Index (GRIN) Fiber
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Graded Index (GRIN) Fiber

The refractive index profile can 
generally be described by a power law 
with an index γ called the profile index 
(or the coefficient of index grating) so 
that,

n = n
1
[1 − 2Δ(r/a)γ]1/2  ;  r < a,

n = n
2

; r ≥ a

Minimum intermodal 
dispersion

Minimum intermodal 
dispersion
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Graded Index (GRIN) Fiber

Minimum intermodal dispersion

Minimum intermodal dispersion

Profile dispersion parameter
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Graded Index (GRIN) Fiber

Effective  numerical aperture for GRIN fibers

Number of modes in a graded index fiber
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Table 2.5
Graded index multimode fibers 

d = core diameter (μm), D = cladding diameter  (μm). Typical properties at 850 nm. VCSEL is a 
vertical cavity surface emitting laser. α is attenuation along the fiber. OM1, OM3 and OM4 are 
fiber standards for LAN data links (ethernet). α are reported typical attenuation values. 10G and 
40G networks represent data rates of 10 Gb s-1 and 40 Gb s-1 and correspond to 10 GbE (Gigabit 
Ethernet) and 40 GbE systems.
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Example: Dispersion in a GRIN Fiber and Bit Rate
Graded index fiber. Diameter of 50 μm and a refractive index of n

1
 = 1.4750, Δ = 0.010. 

The fiber is used in LANs at 850 nm with a vertical cavity surface emitting laser (VCSEL) that has very a 
narrow linewidth that is about 0.4 nm (FWHM). Assume that the chromatic dispersion at 850 nm is −100 
ps nm-1 km-1 as shown in Table 2.5. Assume the fiber has been optimized at 850 nm, and find the 
minimum rms dispersion. How many modes are there? What would be the upper limit on its bandwidth? 
What would be the bandwidth in practice?

Solution

Given Δ and n1,  we can find n2 from 
Δ = 0.01 = (n1 − n2)/n1 = (1.4750 − n2)/1.4750.  
∴ n2 = 1.4603. 
The V-number is then 
V =  [(2π)(25 μm)/(0.850 μm)(1.47502−1.46032)1/2 = 38.39
For the number of modes we can simply take γ = 2 and use
M = (V2/4) = (38.392/4) = 368 modes 
The lowest intermodal dispersion for a profile optimized graded index fiber for a 1 km of 
fiber, L = 1 km, is
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Example: Dispersion in a GRIN Fiber and Bit Rate
Solution continued

= 14.20×10-15 s m-1 or 14.20 ps km-1

Assuming a triangular output light pulse and the relationship between σ and Δτ
1/2

 
given in Table 2.4, the intermodal spread Δτ

intermode
 (FWHM) in the group delay 

over 1 km is

Δτ
intermode

 = (61/2)σ
intermode

 = (2.45)(14.20 ps) = 34.8 ps

We also need the material dispersion at the operating wavelength over 1 km, 
which makes up the intramodal dispersion Δτ

intramode
 (FWHM)

Δτ
intramode

 = L|D
ch

| Δλ
1/2

 = (1 km)(−100 ps nm-1 km-1)(0.40 nm) = 40.0 ps 

Δτ = 53.0 ps
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Example: Dispersion in a GRIN Fiber and Bit Rate
Solution continued

= 11.5 Gb s-1

Optical bandwidth f
op

 = 0.99B = 11.4 GHz

This is the upper limit since we assumed that the graded index fiber is perfectly 
optimized with σ

intermode
 being minimum. Small deviations around the optimum γ 

cause large increases in σ
intermode

, which would sharply reduce the bandwidth. 
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Example: Dispersion in a GRIN Fiber and Bit Rate
Solution continued

If this were a multimode step-index fiber with the same n
1
 and n

2
, then the full 

dispersion (total spread) would roughly be

= 4.92×10-11 s m-1 or 49.2 ns km-1

To calculate the BL we use σ
intermode

 ≈ 0.29Δτ 

= 17.5 Mb s-1 km 

LANs  now use graded index MMFs, and the step index MMFs are used 
mainly in low speed instrumentation 
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Example: Dispersion in a graded-index fiber and bit rate

Consider a graded index fiber whose core has a diameter of 50 μm and a refractive index of 
n

1
 = 1.480. The cladding has n

2
 = 1.460. If this fiber is used at 1.30 μm with a laser diode 

that has very a narrow linewidth what will be the bit rate × distance product? Evaluate the 
BL product if this were a multimode step index fiber.

Solution 
The normalized refractive index difference Δ = (n

1
 − n

2
)/n

1
 = (1.48 − 1.46)/1.48 = 0.0135. 

Dispersion for 1 km of fiber is

σ
intermode

/L = n
1
Δ2/[(20)(31/2)c] = 2.6×10-14 s m-1 or 0.026 ns km-1.

BL = 0.25/σ
intermode

 = 9.6 Gb s-1 km

We have ignored any material dispersion and, further, we assumed the index variation to 
perfectly follow the optimal profile which means that in practice BL will be worse. (For 
example, a 15% variation in γ from the optimal value can result in σ

intermode
 and hence BL 

that are more than 10 times worse.)

If this were a multimode step-index fiber with the same n
1
 and n

2
, then the full dispersion 

(total spread) would roughly  be  6.67×10-11 s m-1 or 66.7 ns km-1 and BL  = 12.9 Mb s-1 km

Note: Over long distances, the bit rate × distance product  is not constant for multimode 
fibers and typically B ∝ L−γ where γ is an index between 0.5 and 1. The reason is that, due to 
various fiber imperfections, there is mode mixing which reduces the extent of spreading.
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Example: Combining intermodal and intramodal dispersions
Consider a graded index fiber with a core diameter of 30 μm and a refractive index of 1.474 at the 
center of the core and a cladding refractive index of 1.453. Suppose that we use a laser diode emitter 
with a spectral linewidth of 3 nm to transmit  along this fiber at a wavelength of 1300 nm. Calculate, 
the total dispersion and estimate the bit-rate × distance product of the fiber. The material dispersion 
coefficient D

m
 at 1300 nm is −7.5 ps nm-1 km-1. 

Solution

The normalized refractive index difference Δ = (n
1
 − n

2
)/n

1
 = (1.474 − 1.453)/1.474 = 

0.01425. Modal dispersion for 1 km is

σ
intermode

 = Ln
1
Δ2/[(20)(31/2)c] = 2.9×10-11 s 1 or 0.029 ns.

The material dispersion is

Δτ
1/2

 = LD
m 

Δλ
1/2

 = (1 km)(7.5 ps nm-1 km-1)(3 nm) = 0.0225 ns

Assuming a Gaussian output light pulse shape, 

σ
intramode

 = 0.425Δτ
1/2

 = (0.425)(0.0225 ns) = 0.0096 ns

Total dispersion is  

B = 0.25/Δτ
rms

 = 8.2 Gb

Assume L = 1 km
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GRIN Rod Lenses

Point O is on the rod face center 
and the lens focuses the rays 

onto O' on to the center of the 
opposite face. 

One pitch (P) is a full one period  
variation in the ray trajectory 
along the rod axis. 

The rays from O 
on the rod face 

center are 
collimated out. 

O is slightly away from 
the rod face and the rays 

are collimated out.
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Attenuation

Attenuation = Absorption + Scattering 

Attenuation coefficient α is defined as the fractional decrease in 
the optical power per unit distance. α is in m-1.

P
out

 = P
in

exp(−αL)

The attenuation of light in a medium
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Attenuation in Optical Fibers

Attenuation vs. wavelength for a standard silica based fiber. 
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Lattice Absorption (Reststrahlen Absorption)

EM Wave oscillations are coupled to lattice vibrations (phonons), vibrations of the ions in the 
lattice. Energy is transferred from the EM wave to these lattice vibrations.

This corresponds to “Fundamental Infrared Absorption” in glasses
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Rayleigh Scattering

Rayleigh scattering involves the polarization of a small dielectric particle or a region 
that is much smaller than the light wavelength.  The field forces dipole oscillations in 
the particle (by polarizing it) which leads to the emission of EM waves in "many" 
directions so that a portion of the light energy is directed away from the incident beam.

βΤ  = isothermal compressibility (at T
f
) 

T
f
  = fictive temperature (roughly the 

softening temperature of glass) where 
the liquid structure during the cooling of 
the fiber is frozen to become the glass 
structure
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Example: Rayleigh scattering limit

What is the attenuation due to Rayleigh scattering at around the λ = 1.55 μm window 
given that pure silica (SiO

2
) has the following properties: T

f
 = 1730°C (softening 

temperature);  β
T
 = 7×10-11 m2 N-1 (at high temperatures); n = 1.4446 at 1.5 μm.

Solution 

We simply calculate the Rayleigh scattering attenuation using

αR =  3.276×10-5 m-1 or 3.276×10-2 km-1

Attenuation in dB per km is 

α
dB

 = 4.34α
R
 = (4.34)(3.735×10-2 km-1) = 0.142 dB km-1

This represents the lowest possible attenuation for a silica glass core fiber at 
1.55 μm. 
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Attenuation in Optical Fibers

Attenuation vs. wavelength for a standard silica based fiber. 
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Low-water-peak fiber has no OH- peak 

E-band is available for communications with this fiber

113



Attenuation in Optical Fibers
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Attenuation

AR in dB km-1 μm4

λ in μm

αR in dB km-1
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