Machine Learning in Medicine

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Machine Learning in Medicine

 $Tran\ Giang\ Son,\ tran-giang.son@usth.edu.vn$

Review

Machine Learning in Medicine

Tran Giang Son, tran-giang.son@usth.edu.vn

AI, ML, DL, DS

• Whaaaaaaaaaa?

Machine Learning in Medicine

AI, ML, DL, DS

• Whaaaaaaaaaa?

Artificial Intelligence

Machine Learning

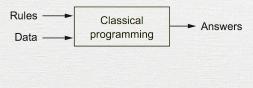
Deep Learning

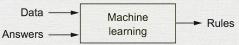
Machine Learning in Medicine

Tran Giang Son, tran-giang.son@usth.edu.vn

Artificial Intelligence

- The effort to automate intellectual tasks normally performed by humans
- Many more approaches without learning
 - Symbolic AI, Hardcoded rules
 - Expert systems
- Simply too many rules...


Machine Learning


- AI: Programmers crafting data-processing rules by hair
- A computer learn these rules by looking at data?
 - Trained
 - Not explicitly programmed
 - Statistical rules
- Kinda the most successful subfield of AI
 - More data
 - Bigger, faster hardware

Machine Learning in Medicine

Tran Giang Son, tran-giang.son@usth.edu.vn

Machine Learning

- Input data
- Examples of expected output
 - Also called
- Evaluating if algorithm is good

Machine Learning: Input

• Data abstraction

- Pixels
- Edges
- Shapes
- Human
- Crowd

Machine Learning: Expected output

- Expected output
 - Pixels: red, green, blue
 - Edges: horizontal, vertical, diagonal
 - Shapes: rectangle, circle, oval
 - Human: head, hand, leg, body
 - Crowd: male, female, kid, toddler

• Input: a photo

Machine Learning in Medicine

Tran Giang Son, tran-giang.son@usth.edu.vn

- Input: a photo
- Expected output: a dog

- Input: a photo
- Expected output: a dog
- Algorithm:

- Input: a photo
- Expected output: a dog
- Algorithm:
 - "I guess this is a cat"

- Input: a photo
- Expected output: a dog
- Algorithm:
 - "I guess this is a cat"
 - Looks at the output

- Input: a photo
- Expected output: a dog
- Algorithm:
 - "I guess this is a cat"
 - Looks at the output
 - "Err... I think it should have been a cat"

- Input: a photo
- Expected output: a dog
- Algorithm:
 - "I guess this is a cat"
 - Looks at the output
 - "Err... I think it should have been a cat"
 - "But they look like a cat"

- Input: a photo
- Expected output: a dog
- Algorithm:
 - "I guess this is a cat"
 - Looks at the output
 - "Err... I think it should have been a cat"
 - "But they look like a cat"
 - "What are the differences?"

- Input: a photo
- Expected output: a dog
- Algorithm:
 - "I guess this is a cat"
 - Looks at the output
 - "Err... I think it should have been a cat"
 - "But they look like a cat"
 - "What are the differences?"
- Differences: evaluation between prediction and groundtruth

Machine Learning

Artificial Intelligence Machine Learning Deep Learning

- Supervised learning
 - This is a dog, this is a cat
 - Does this photo look like a dog or a cat?
- Unsupervised learning
 - This one looks alike this one. Group 1.
 - That one looks alike another one. Group 2.

Machine Learning

- Problems: classification, clustering regression, association rules, reinforcement learning, feature learning,...
 - Classification: decision tree, random forest, k-NN, linear regression, naive bayes, multi layer perceptron, relevance vector machine, support vector machine
 - Clustering: hierachical, k-means, mean-shift

Medicine

Machine Learning vs Data Mining

- Machine Learning: prediction based on known properties
- Data Mining: discovery of unknown properties

Machine Learning in Medicine

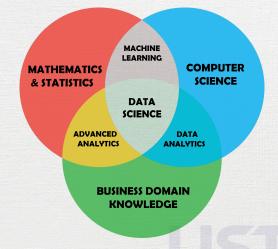
Tran Giang Son, tran-giang.son@usth.edu.vn

Deep Learning

- A specific subfield of machine learning
- Learning data representation
 - Using **layers** of abstraction
 - Not deeper understanding

Deep Learning

- A specific subfield of machine learning
- Learning data representation
 - Using **layers** of abstraction
 - Not deeper understanding
- Deeeeeeeeeeeeee in layers
 - Tens
 - Hundreds


Machine Learning in Medicine

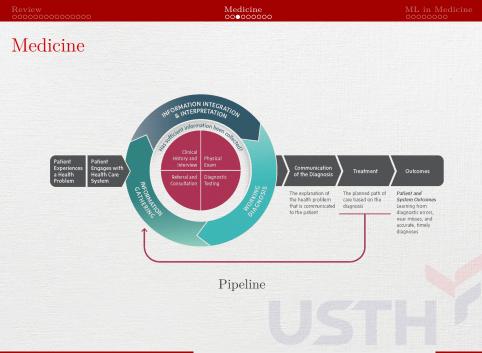
Tran Giang Son, tran-giang.son@usth.edu.vn

• A science about data $\ensuremath{\mathfrak{O}}$

- A science about data $\ensuremath{\textcircled{}}$
- Usage of deep learning, machine learning, artificial intelligence for a specific domain

Machine Learning in Medicine

Medicine


Machine Learning in Medicine

Tran Giang Son, tran-giang.son@usth.edu.vn

Medicine

the science or practice of the diagnosis, treatment, and prevention of disease

Machine Learning in Medicine

Tran Giang Son, tran-giang.son@usth.edu.vn

Medicine

- Information gathering
 - Clinical history
 - Interview
 - Physical exam
 - Diagnostic testing
- Information integration and interpretation
 - Comparing with knowledge and experience
 - Generating a working diagnosis

Medicine

- Determining a working diagnosis
 - Communicating the diagnosis to the patient
 - Degree of certainty
 - Next steps
- Feedback and follow-up
 - Monitoring the patient's response to treatment
 - Updating the diagnosis if necessary.

Diagnosis

• Complex, patient-centered, collaborative activity

- Information gathering
- Clinical reasoning
- Goal: determining a patient's health problem

Diagnosis

- Considerations in the diagnostic process
 - Diagnostic uncertainty
 - Time-consuming
 - Population trends
 - Diverse populations
 - Health disparities
 - Mental health

Treatment

- A very wide domain in medicine
- We don't do it :-)

Prevention

- A very wide domain in medicine
- We don't do it :-)

ML in Medicine

Machine Learning in Medicine

Tran Giang Son, tran-giang.son@usth.edu.vn

What

- Application of computational techniques
 - Allow computers to perform complex tasks related to healthcare
 - Mathematical models and algorithms
 - Learn from data
 - Make predictions or decisions

Why

- More computational power, storage, memory
- More medical data generation: health records, imaging, genomics
- Early diagnosis
- Overloaded hospitals
- Personalized health care
- Reduced costs

- Disease Diagnosis and Prediction
 - Analyzing patient data (e.g., symptoms, lab results)
 - Diagnose diseases (e.g., cancer, diabetes) and predict outcomes
 - Early detection improves treatment efficacy
- Medical Imaging
 - Enhancing radiology by automating image analysis
 - Assisting in detecting tumors, fractures, and abnormalities
 - Many modalities: X-rays, MRIs, and CT scans

- Drug Discovery and Development
 - Predicting drug interactions
 - Identifying potential candidates
 - Optimizing existing drugs
 - Accelerating research by analyzing molecular data

• Personalized Treatment

- Preparing treatment plans based on individual patient
- Genetics, lifestyle, and medical history
- Reducing costs and improves efficiency

• Genomics and Precision Medicine:

- Analyzing genomic data to identify genetic variants associated with diseases
- Informing personalized treatment strategies
- Predictive Analytics
 - Predicting disease outbreaks, patient readmissions, and healthcare utilization
 - Preventive measures.

How?

- Common techniques
 - Regression models
 - Classification models
- Metrics