## Medical Imaging

#### Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Medical Imaging

Tran Giang Son, tran-giang.son@usth.edu.vn

# Medical Imaging

Medical Imaging

Tran Giang Son, tran-giang.son@usth.edu.vn

# Introduction

- See inside the human (or animal) body?
  - Cut it open (i.e., surgery)
  - Medical imaging: less invasive method (or completely non-invasive)
- Metabolic / functional / molecular activities
  - Invisible to naked eye
- 2D signal f(x, y) or 3D f(x, y, z)

# Types

- Radiological technologies
  - X-ray (projection)
  - computed tomography (CT)
  - mammography
- Magnetic resonance imaging (MRI)
- Nuclear medicine imaging
  - single photon computed tomography (SPECT)
  - positron emission tomography (PET)
- Ultrasound (US)
- Other imaging techniques

## Appliances



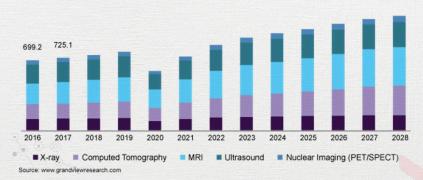
#### CT Scanner

MRI Scanner

# Appliances






Medical Imaging

 $Tran\ Giang\ Son,\ tran-giang.son@usth.edu.vn$ 

....

## Appliances

#### U.K. medical imaging market size, by product, 2016 - 2028 (USD Million)



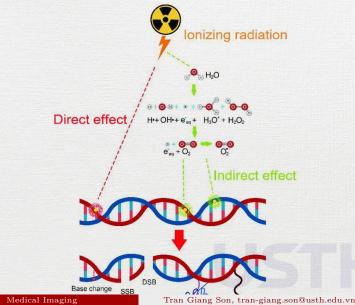
COVID-19 impact: 17% reduction during the pandemic

### Invasive or not?

Medical Imaging

Tran Giang Son, tran-giang.son@usth.edu.vn

## Ionizing vs. Nonionizing Radiation


- Radiations can ionize biological molecules
  - X-ray, CT, mammography, SPECT, and PET
  - Cause DNA strand breaks
  - Increase the long-term risk for cancer
- Others (MRI, Ultrasound) do not radiate

### Ionizing vs. Nonionizing Radiation

- The minimum energy required to ionize molecules is > 5–100 electron volts (eV).
- 1 eV = Energy acquired by an electron when accelerated across a potential difference of 1V

| Туре             | Imaging procedure | Energy (eV)       |
|------------------|-------------------|-------------------|
| Ultrasound waves | US                | < 0.000 000 04    |
| Radiofrequency   | MRI               | < 0.001           |
| X-Rays           | X-ray, CT         | 1,000 - 10,000    |
| $\gamma$ -Rays   | SPECT, PET        | 100,000 - 500,000 |
|                  |                   |                   |

# Ionizing vs. Nonionizing Radiation



## Radiation Doses

- The energy deposited per unit mass of tissue by radiation
- Unit: Sievert (Sv) or rem
  - 1 sievert (Sv) = 100 rem
  - 1 millisievert (mSv) = 0.1 rem



# Radiation Doses

| Imaging procedure                                                                          | Modality | Radiation dose (mSv) |  |
|--------------------------------------------------------------------------------------------|----------|----------------------|--|
| Chest                                                                                      | X-ray    | 0.02-0.04            |  |
| Lumbar spine                                                                               | X-ray    | 0.7                  |  |
| Mammogram                                                                                  | X-ray    | 0.7                  |  |
| Abdomen                                                                                    | CT       | 10.0                 |  |
| Coronary angiogram                                                                         | CT       | 4.6-15.8             |  |
| Bone scan ( <sup>99m</sup> Tc-MDP)                                                         | SPECT    | 4.2                  |  |
| <i>V/Q</i> lung scan ( <sup>99m</sup> Tc-MAA/ <sup>99m</sup> Tc aerosol)                   | SPECT    | 2.0                  |  |
| Renal scan ( <sup>99m</sup> Tc-MAG <sub>3</sub> )                                          | SPECT    | 3.6-5.2              |  |
| Myocardial perfusion scan<br>( <sup>99m</sup> Tc-sestamibi/ <sup>99m</sup> Tc-tetrofosmin) | SPECT    | 11.2                 |  |
| Whole body scan ( <sup>18</sup> FDG)                                                       | PET      | 14.0                 |  |

# Radiation Doses



#### 5,000,000 µSv Fatal acute dose

#### 6,000 µSv

Spending an hour in the Chernobyl nuclear power plant zone today

**70 µSv** Year of living in a concrete house

**50 μSv** Transatlantic flight

**10 µSv** Background dose of radiation in a megacity in one day

5 µSv Dental or hand X-ray

**3 μSν** Watching TV for one year

**0.9 µSv** Passing through an airport scanner

**0.1 µSv** One eaten banana

Medical Imaging

Tran Giang Son, tran-giang.son@usth.edu.vn

# Comparison

| Method  | Chest                                         | Abdomen                                         | Head               | Cardiovascular                    | Skeletal/<br>muscular |
|---------|-----------------------------------------------|-------------------------------------------------|--------------------|-----------------------------------|-----------------------|
| СТ      | Gold Standard                                 | Need contrast<br>for excellency,<br>widely used | Good for<br>trauma | Gold standard                     | Gold<br>standard      |
| US      | No use, except heart                          | Problems with gas                               | Poor               | Poor                              | Elastography          |
| Nuclear | Extensive use in heart<br>and therapy in lung | CT or MRI is<br>merged                          | Pet                | Perfusion                         | Bone<br>marrow        |
| MRI     | Growing cardiac<br>applications               | Increased role<br>of MRI                        | Gold<br>standard   | Will replace ct<br>in near future | Excellent             |