CHEM1.1: GENERAL CHEMISTRY I

I. Course description:

1. Credit points: 3 ECTS

2. Time commitment:

Items	Lecture	Tutorial	Practical	Total
No. of hours	24	10	0	34

3. Prerequisites: High-school Chemistry

4. Recommended background knowledge: N/A

5. Subject description:

The General Chemistry I course provides fundamental knowledge on chemical composition and structure of matters.

6. Objectives & Outcome:

The students will learn the following concepts:

- Critical role of chemistry in modern fundamental and applied sciences, specially those are currently proposed at USTH.
- Electronic structure of atoms
- Periodic properties of elements
- Chemical bonds
- Structure of molecules and materials

7. Assessment/ Evaluation

Component	Attendance + Homeworks	Exercises	Assignments	Practical	Midterm	Final
Percentage %	10	0	Bonus up to 10% based on performance in TD section	0	40	50

8. Prescribed Textbook(s):

- [1] Brown, LeMay, Bursten, Murphy, Woodward, Stoltzfus, Chemistry: The Central Science, 2015, 13th Edition, Pearson Education.
- [2] Petrucci, Herring, Madura, Bissonnette, General Chemistry: Principles and Modern Application, 2011, 10th Edition, Pearson Canada

II. Course content & schedule:

- 1. Introduction: Role of chemistry in modern sciences (with focus on those are currently proposed at USTH)
- 2. Matter and Measurement

- + Classification of matter
- + Physical and chemical changes, separation of mixtures
- + Units of measurement

3. Atoms

- + The atomic theory of Matter
- + The discovery of Atomic structure
- + The modern view of atomic structure (atomic number, mass, isotopes)
- 4. Electronic structure of atoms
 - + The wave nature of light
 - + Quantized energy and photons
 - + Line spectra and the Bohr model
 - + Quantum mechanics and atomic orbitals
 - + Representations of orbitals
 - + Many electron atoms
 - + Electron configurations
 - + Electron configurations and the periodic table
- 5. Periodic properties of the elements
 - + Development of the periodic table
 - + Effective nuclear charge
 - + Sizes of Atoms and Ions
 - + Ionization energy
 - + Electron affinity
- 6. Basic concepts of chemical bonding
 - + Lewis symbols and the octet rule
 - + Ionic bonding
 - + Covalent bonding
 - + Bond polarity and electronegative
 - + Drawing Lewis structure
 - + Resonance structure

- + Exception of the octet rule
- + Strength and Lengths of covalent bonds
- 7. Molecular geometry and bonding theories
 - + Molecular shapes
 - + VSEPR Model
 - + Molecular shape and molecular polarity
 - + Covalent bonding and orbital overlap
 - + Hybrid orbitals
 - + Multiple bonds
 - + Molecular orbitals
- 8. Chemical reaction
 - + Theory of solutions and Solubility Rules
 - + Molecular and Ionic equations
 - + Types of chemical reactions : Precipitations; acid-base reactions; Oxidation Reduction reactions
 - + Working with solution: Molar concentration; Diluting solution
 - + Quantitative analysis: Gravimetric analysis; Volumetric analysis
- III. Reference Literature: N/A