Software Engineering

Lecture 3(c):

Introduction to Requirement analysis (1)



Outline

* The central role of requirement analysis in
requirement engineering

* Types of requirement
* Requirement capturing

Duc M. L. Software Engineering



References

 Liskov & Guttag (2001):

— Chapter 11

- Modified to use UML use case diagram
 Sommerville (2011):

- Chapter 4: 4.(1-2,4,5)

Duc M. L. Software Engineering



What is requirement engineering?

 RE is a process to:
- capture,
- analyse,
- document, and
- check what services a software provide

* |terative:
- Incrementally refine the requirements

Duc M. L. Software Engineering



Requirements
Specification

System Requirements
Specification and
Modeling

User Requirements
Specification

Business Requirements
Specification

Start

Svst Feasibility
stem
Requirements YReq_ Study
Elicitation Elicitation User
Requirements _
Elicitation Prototyping

Reviews

Figure 4.12 A spiral

lterative RE

Requirements
Validation

view of the (Sommerville, 2011)

requirements System Requirements
engineering process Document



@ Types of requirement

 Functional
 Non-functional

Duc M. L. Software Engineering



Functional requirements

e Statements about functions and data

e Data: statements about the entities of interests

— written in a structured form:
* Entity name: <attributes>
* Relationship name (entities): <attributes>

 Derived from normal and erroneous user
Interactions:

— normal: results in a normal program state
— erroneous: results in errorneous program state

Duc M. L. Software Engineering



Example: KEngine requirements

Section 12.4 (Liskov & Guttag, 2001)

// EFFECTS: Uses the Web server to update the price of p a
nd
a1l other positions for that stock.
getPrices
/{ CHECKS: There exists portfolic £ in Open
// EFFECTS: Uses the Web server to update the prices of
all positions in f.
Also updates prices of all other positions for tho

12.4 REQUIREMENTS SPECIFICATION FOR A SEARCH
ENGINE

This section explores a second example, a search engine that
allows the user to run queries against a collection of
documents. It describes both an abbreviated requirements
analysis and the resulting requirements specification.

As usual, we begin our analysis by a scenario representing
normal case behavior. Suppose the user starts a session with
the search engine. The first question that comes up concerns
whether the engine already has a collection of documents
that it remembers from the last time it ran. Let’s assume
that the customer is interested only in new searches.
Therefore, the first thing the user must do is identify some

documents of interest. Let’s assume that this is done by
presenting a URL of a site containing documents; the engine
will run searches against all of those documents.
Furthermore, the customer is interested in multisite
searches; therefore, the user can present additional URLs of
document-containing sites, and the engine will increase its
collection as a result. The customer indicates that the
collection can be enlarged at any time, not just at the start of
a session, and that there is no interest in removing
documents from the collection.

The customer indicates that a user should be able to search
the collection for a document with a particular title.
However, the main purpose of the engine is to run queries
against the collection, which means we have to decide what
a query is. In consultation with the customer, we determine
that a query begins by the user presenting a single word,
which we will refer to as a keyword. The customer indicates
that many words are uninteresting (e.g., “and” and “the”)
and will not be used as keywords. The customer expects the
search engine to know what the uninteresting words are
without any user intervention; thus, it must have access to

Duc M. L. Software Engineering 8



Example: KEngine requirements (2)

some storage, such as a file, that lists the uninteresting
words.

The system responds to a query by presenting information
about what documents contain the keyword. This
information is ordered by how many times the keyword
occurs in the documents. The system does not present the
actual documents, but rather provides information so that
the user can examine the matching documents further if
desired.

However, the ability to query using a single keyword is quite
limited, and the customer also requests the ability to
“refine” a query by providing another keyword; the
matching documents must contain all the keywords. The
customer rules out more sophisticated queries, such as
queries that match documents containing any one of their
keywords or queries that require the keywords to be
adjacent in the document in order for there to be a match.
However, such queries are likely in a later release of the
product.

Now we need to consider user and system errors, and also
performance. The main performance issue is how to carry
out the queries; the customer wants it to be done
expeditiously. This requirement has two implications. First,
the program must contain data structures that speed up the
process of running a query. Second (and more important) is
the question of whether querying requires visiting the Web
sites containing the documents. The customer indicates that
this should not happen; instead, the query should be based
on information already known to the search engine. One
implication of this decision is that the collection might not
be up to date. A site might have been modified since the
search engine was told about it, and queries will not reflect
the modifications: they will miss newly added documents or
find documents that no longer exist. The customer indicates
that this is acceptable but that tracking modifications might
be desired in a future release. The customer also indicates
that all information about documents should be stored at
the search engine, so that if a query matches a document,
the user will be able to view the document even if it no
longer exists at the site from which it was fetched. One point

Duc M. L. Software Engineering 9




Example: KEngine requirements (3)

to note about these decisions is that a trade-off is being
made between speed of processing queries versus the space
taken for storing documents at the search engine.

Now let’s consider errors. There aren’t any interesting
system errors: the system has some persistent storage
containing information about uninteresting words, but this
storage is not modified and the customer is not concerned
about media failures. Furthermore, the customer indicates
that it is acceptable for the search engine to simply fail if
something goes wrong.

There are interesting user errors, however. The user could
enter an uninteresting word as a keyword or could enter a
word not in any document; the customer indicates that the
user should be told about the error in the first case, but that
in the second case, the response will simply be an empty set
of matches. The user might also present a URL for a site that
doesn’t exist, that doesn’t contain documents, or that has
already been added to the collection; all of these actions
should result in the user being notified of the error. The
customer indicates that it is acceptable if a document is

found at multiple sites and that, in this case, the document
will end up in the collection just once. Two documents are
considered to be the same if they have the same title; again,
a later release might handle things differently.

Now that we have a rough idea of what the search engine is
supposed to do, we are ready to write the requirements
specification. As we do so, we will uncover a number of
issues that were overlooked in the analysis but must be
resolved to arrive at a precise specification. Thus, the
process of writing the requirements specification, including
the definition of the data model, is an intrinsic and
important part of the requirements analysis process.

The sets and relations for the search engine are defined in
Figure 12.11 and the graph is given in Figure 12.12. A
document has a title, some URLSs (of the sites from which it
was obtained), and a body; a body is a sequence of words.
The NK node represents the uninteresting words; this set is
fixed (its membership never changes). Match represents the
set of documents that match the current query; Key is the

set of keywords used in this query. Key and NX are disjoint

Duc M. L. Software Engineering 10




Example: KEngine normal FRs

documents of interest. Let's assume that this 1s done by
presenting a URL of a site containing documents: the engine
will run searches against all of those documents.
Furthermore, the customer is interested in multisite
searches; therefore, the user can present additional URLs of
document-containing sites, and the engine will increase its
collection as a result. The customer indicates that the
collection can be enlarged at any time, not just at the start of
a session, and that there is no interest in removing
documents from the collection.

The customer indicates that a user should be able to search
the collection for a document with a particular title.
However. the main purnose of the eneine 1s to run queries



Example: KEngine normal FRs

* the first thing that the user should do is to
identify the documents of interest...presenting
the URL of a site

— obtain documents from an URL

Duc M. L. Software Engineering 12



KEngine functions (1)

Functions Descriptions

F1 Obtain to retrieve web documents from a
documents given URL, which could be the URL of
a local folder or of a remote web site

Duc M. L. Software Engineering 13



Example: KEngine normal FRs (cont’d)

e documents of interest. Let’s assume that this is done by
presenting a URL of a site containing documents; the engine
will run searches against all of those documents.
Furthermore, the customer is interested in multisite
searches; therefore, the user can present additional URLs of

e document-containing sites, and the engine will increase its

collection as a result. The customer indicates that the

collection can be enlarged at any time, not just at the start of

; a session, and that there 1s no interest in removing

o that documents from the collection.
The customer indicates that a user should be able to search

ents the collection for a document with a particular title.
However, the main purpose of the engine is to run queries
against the collection, which means we have to decide what

ting
.o a query is. In consultation with the customer, we determine



some storage, such as a file, that lists the uninteresting
words.

The system responds to a query by presenting information
about what documents contain the keyword. This
information is ordered by how many times the keyword
occurs 1n the documents. The system does not present the
actual documents, but rather provides information so that
the user can examine the matching documents further if
desired.

However, the ability to query using a single keyword 1s quite

limited, and the customer also requests the ability to
o€ o~ » - 1 _ . =7 o« 1. VY. 1. 1.



* the system run queries against the
collection...presenting information about
documents containing the keyword

— search for documents by keyword

Duc M. L. Software Engineering

16



Example: KEngine normal FRs (cont’d)

The system responds to a query by presenting information
about what documents contain the keyword. This
information is ordered by how many times the keyword
occurs in the documents. The system does not present the
actual documents, but rather provides information so that
the user can examine the matching documents further if
desired.

However, the ability to query using a single keyword 1s quite
limited, and the customer also requests the ability to
“refine” a query by providing another keyword; the
matching documents must contain all the keywords. The
customer rules out more sophisticated queries, such as



* the customer requests the ability to “refine” a
query by providing another keyword (the
matching documents must contain all the
keywords)

— incrementally search for documents by
keywords

Duc M. L. Software Engineering

18



KEngine functions (2)

Functions Descriptions
F1 Obtain to retrieve web documents from a
documents given URL, which could be the URL of
a local folder or of a remote web site
F2 Search for to search the documents collection for
documents the documents that contain the

keywords of a query; allowing the user to
refine query with more keywords

Duc M. L. Software Engineering 19




Example: KEngine normal FRs (cont’d)

documents of interest. Let’s assume that this is done by
presenting a URL of a site containing documents; the engine
will run searches against all of those documents.
Furthermore, the customer is interested in multisite
searches; therefore, the user can present additional URLSs of
document-containing sites, and the engine will increase its
collection as a result. The customer indicates that the
collection can be enlarged at any time, not just at the start of
a session, and that there 1s no interest in removing
documents from the collection.

The customer indicates that a user should be able to search
the collection for a document with a particular title.
However, the main purpose of the engine 1s to run queries
against the collection, which means we have to decide what



 the user should be able to search the
(documents) collection for a document given a
title

— display a document

Duc M. L. Software Engineering 21



KEngine functions (3)

Functions Descriptions
F1 Obtain to retrieve web documents from a
documents given URL, which could be the URL of
a local folder or of a remote web site
F2 Search for to search the documents collection for
documents the documents that contain the

keywords of a query

F3 Display a to retrieve a document from the
document documents collection given its title

Duc M. L. Software Engineering 22



KEngine errorneous

e System errors: none

e User errors:
E1: Enters a wrong, empty-target, or duplicate URL
— informs with an error
- E2: Enters a non-keyword
— informs with an error
- E3: Enters a non-existent word
— returns an empty result

Duc M. L. Software Engineering

23



KEngine functions (4)

Functions Descriptions

Obtain documents E1: If the user enters a wrong, empty-target,
or duplicate URL, the system informs with an

error

Duc M. L. Software Engineering 24



KEngine functions (5)

Functions Descriptions

Obtain documents E1: If the user enters a wrong, empty-target,
or duplicate URL, the system informs with an

error
Search for E2: If the user enters a non-keyword, the
documents system informs with an error

E3: If the user enters a non-existent word,
the system returns with an empty result

Duc M. L. Software Engineering 25



KEngine data requirements

* a document has a title, some URLS, and a
body,; a body is a sequence of words

— Document: title, Url, body

Duc M. L. Software Engineering

26



* many words are uninteresting and are not
used as keywords

— Keyword, Non-keyword

appears-in(Keyword,Document): frequency

Duc M. L. Software Engineering

27



* a query begins by having a single keyword
— can be refined with another keyword

— Query: keywords
has(Query,Keyword)

Duc M. L. Software Engineering

28



* a query result consists of matches, which are
documents containing all the query keywords,
ordered by the keyword frequencies

— Match: document, sum-freq

has(Query, Match)
refers-to(Match, Document)

Duc M. L. Software Engineering

29



Non-functional requirements

* Constraints on the functions or emergent properties
* NFR may lead to other FRs

* Should be quantified when possible:
- e.g. range of response time is 1-5 secs

Duc M. L. Software Engineering 30



Types of NFR

* Performance

* Modifiability

* Reusability

* Delivery schedule

Duc M. L. Software Engineering



@ Requirement capturing

* To capture the detailed requirements

e Techniques:
* interview
* document capturing
* use case
* prototyping

Duc M. L. Software Engineering



Use case

* One or more related user interactions with system
— an interaction is structured as a scenario

* Capture the details for each function

* Types: normal and extended

- extended type include alternative and erroneous
interactions

* Use cases can be linked
* Documented using a use case description

Duc M. L. Software Engineering 33



UC illustration

System

User interacts with system by
performing its functions

Duc M. L. Software Engineering

34



Example: KEngine

Duc M. L.

Obtain documen)
ﬂearch for

\documents

\@ay a dOCU@

KEngine System

Software Engineering

35



Use case description (UCD)

<Function name>

<Basic | Extended>

Actors Name(s) of user(s) that interact

Description Short description of the use case

Data Data requirements

Stimuli User action that causes the system to
perform this function

Response Description of function (what the system

does in response to stimuli)

Pre-conditions

synonymous to REQUIRES

Post-conditions

synonymous to EFFECTS

Extension

errors (if any)




UCD illustration

i - System
Pre-condition

Actor(s)
‘ 4_l Extension

Stimuli Data Post-condition Response

Description



Example: KEngine F2 (basic)

Search for documents Basic

Actors User

Description A user enters a keyword query and requests the
system to execute it

Data The input data include a keyword query

Stimulus User command that requests the system to execute
the query

Duc M. L. Software Engineering 38



(cont'd)

Response

The system searches in the collection for
the documents containing all the query
keywords and return them as the result.
Each document is considered a match,
containing an aggregate of all the
frequencies of the query keywords.

Pre-conditions

A document collection has been obtained
and analysed to determine the keywords
and non-keywords

Post-conditions

Query result containing the matching
documents

Duc M. L.

Software Engineering

39



F2 (extended)

Search for documents Extended

Actors User

Description A user enters a keyword query and requests the system to
execute it

Data The input data include a keyword query

Stimulus User command that requests the system to execute the query

Response The system searches in the collection for the documents

containing all the query keywords and return them as the resuilt.
Each document is considered a match, containing an aggregate
of all the frequencies of the query keywords.

Pre-conditions

A document collection has been obtained and analysed to
determine the keywords and non-keywords

Post-conditions

Query result containing the matching documents

D = N




(cont'd)

Additional scenarios User enters a non-keyword — System
informs with an error

User enters a non-existent word —
System returns an empty result

two
erroneous
Interactions

Duc M. L. Software Engineering 41



Summary

* Requirements may be functional or non-functional

* Arequirement capturing technique is to use use
case description (UCD)

Duc M. L. Software Engineering 42



Q&A

Duc M. L.

Software Engineering

43



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

