OUTLINE

- Plant cell, tissues, organs: basic structure and function
- Transport and translocation of water and solutes
- Photosynthesis and Respiration
- Plant growth and development
- Plant and light response
- Plant hormone and plant tissues culture
- Plant environment interactions

OUTLINE

- Plant cell, tissues, organs: basic structure and function
- Transport and translocation of water and solutes
- Photosynthesis and Respiration
- Plant growth and development
- Plant and light response
- Plant hormone and plant tissues culture
- Plant environment interactions

Bachelor 2: Plant physiology

Lesson 4:

RESPIRATION

Instructor: LE Thi Van Anh

le-thi-van.anh@usth.edu.vn

Learning outcome

By the end of this course, students are able to:

- Give the definition of "cellular respiration"
- Analyze mechanism of pathways/stages in cellular respiration:
 Glycolysis, Krebs cycle, electron transport chain, oxydative pentose
 phosphate
- Compare energy efficiency between Glycolysis + Krebs and oxydative pentose phosphate pathways
- -Analyze relationships between respiration and phototsynthesis

Concept

Gas exchange

5

Concept

Which steps? Where does it occur? Input and Output?

Including 3 steps

- Glycolysis: splitting sugar: cytosol
- Krebs cycle: Matrix of mitochrondia
- Electron transport: membrane of mitochrondia
 Produce: ATP

3 steps to oxidize totally

ATP (Adenosine Triphosphate)

ATP is energy storage potential

ATP is energy storage potential

I'd like 500g of potato, pls!

Glycolysis

Glycolysis

Input: 1 glucose Output: 2 pyruvates 2 H2O 2ATPs 2 NADH Occuring in cytosol

Different source of glycolysis...

Different ways from pyruvate...

Krebs cycle: occurring in Mitochrondia

NADH: high reducing molecule

NAD⁺ (NADP⁺)

NAD(P)H

FADH2: high reducing molecule

Electron transport, ATP synthesis

Coupled with this transfer is the pumping of hydrogen ions.

This pumping generates the gradient used by the ATP synthase complex to synthesize ATP.

Protein complexes in the electron transport chain

Electron transport, ATP synthesis

Transfer electron from high to low electron energy gradually cause releasing energy. This energy help pumping proton from matrix to inter-membrane space

Electron transport, ATP synthesis **NADH** $\xrightarrow{\text{oxidation}}$ **NAD⁺** + 2 e⁻ + H⁺ FADH₂ $\xrightarrow{\text{FAD}}$ FAD + 2H⁺ + 2e⁻

- NADH donates the electrons that transfer from complex I, then to mobile protein Q that bring it to complex III. Here once more, electron is transferred to complex IV by other mobile protein named Cytc

- At the same time FADH2 donates the electrons that transfer from complex II, then transfer similarly to Q protein, complex III, cyt complex and finally to complex IV

- At complex IV, electrons are transferred to oxygen to form ion Oxygen

Electron transport, ATP synthesis (cont)

- Oxygen ion reacts with proton to form water
- At complex I, III, IV, there is proton pump that use energy come from electron transfer to pump proton from matrix to intermembrane space.
- With high concentration intermembrane space, proton diffuse though ATP synthase, that provide energy for ATP synthesis

The oxidative pentose phosphate pathway

The oxidative pentose phosphate pathway

2 Xylulose-5-P + 1 Ribose-5-P \rightarrow 2 Fructose-6-P + 1 Glyceraldehyde-3-P

The oxidative pentose phosphate pathway

Role in plant metabolism

- **NADPH** enter in the electron transport chain, therefore it contribute to cell energy metabolism

- NADPH supply in plastid: NADPH is used for biosynthesis reactions (lipid synthesis, nitrogen assimilation)

- Supply substrates for biosynthesis processes: **ribose-5P** is precursor of the ribose and deoxy ribose needed in the nucleic acid synthesis

- Supply the intermediate compound (erythrose-4-phosphate, combines with PEP) for producing secondary plant metabolites ₂₅

Efficiency...

Glycolysis + Kreb's and Electron transport:

		36 ATP
_	Electron Transport	<u>32 ATP</u>
—	Kreb's	2 ATP
_	Glycolysis	2 ATP

Pentose phosphate:

- Electron Transport (12 NADPH) **36 ATP**

	PHOTOSYNTHESIS	RESPIRATION
	Chloroplasts	Mitochondria
Where?		
	In the presence of light	All the time
When?	*	
		Glucose and oxygen
	Carbon dioxide and water	
Input		
	Glucose and oxygen	
Output	CH ₂	Carbon dioxide and water
Output		
Energy	Light	Chemical bonds
sources		
Energy result	Energy stored	Energy released

Respiration	Photosynthesis
Occur in all tissue	Occur in green tissue
Operate during photosynthesis.	40 - 60% of daily gain is lost by respiration
Photorespiration increase the lost of photosynthesis gain.	