

Keywords:

Sensors – Analyte – Detection – Integrated systems – Passive and dynamic sensors

Objective:

- Introduction of some notions with respect to the integrated systems including physical, chemical and biological sensors
- Showing the importance of such tools for a better understanding of the water cycle from the point of view of water quantity and quality, and a smarter management of the quality of natural, drinking and waste waters

Main part of the courses:

- Introduction of integrated systems and sensors: from definitions and principles to application of different techniques of detection; interest of such tools (measurements, monitoring, data analysis and interpretation, and observation *vs.* modelling
- Presentation of the different types of sensors (chemical, biological, physicochemical, physical); their performance and limits (size, cost, lifetime..., biofouling...)
- Passive vs. dynamic sensors
- More advance with respect to detection systems (optical, electrochemical...) for dynamic *in-situ* sensors
- Integration and networking for data management

Keywords: Sensors – Analyte – Detection – Integrated systems – Passive samplers and dynamic sensors Objective: Introduction of some notions with respect to the integrated systems including physical, chemical and biological sensors Showing the importance of such tools for a better understanding of the water cycle from the point of view of water quantity and quality, and a smarter management of the quality of natural, drinking and waste waters Lectures: October 2018 and January 2019 Control: multiple-choice questionnaire (1 h) + report: deadline January 28th, 2019 Lectures: Dr. Tran Thi Nhu Trang (Faculty of Chemical Engineering and Food Technology – Nguyen Tat Thanh University –

HCMc – ttntrang@ntt.edu.vn) Prof. Philippe Behra (Toulouse INP – philippe.behra@ensiacet.fr)

Sensors

Interests/Why?

Necessity of developing new sensors for continuous analyses, able to communicate, and if possible, at low cost:

for a better understanding and knowledge of:

water cycle

water pathways in the critical zone

for a more clever management of:

quality of natural and drinking waters

urban waste and effluent water

Necessity of a better monitoring of water quality by *in situ* sensors in the frame of global changes and the pressure on limited water resources

Complementary and essential tools of classical analytical laboratory methods and remote sensing data

Sensors

Definition

Sensors: measurement device made of a receptor and a transductor

Receptor: may be physical, chemical or biological, used to measure physical, chemical or biological parameters via the specific recognition of a target (analyte) or a target family

Passive sensors vs. dynamic sensors

"Passive" sensor/sampler: source of energy delivering a signal being out the system

(examples: DGT [Diffusion Gradients in Thin-Films], POCIS [Polar Organic Chemical Integrative Samplers]...)

"Active" sensor: sensor delivering the signal itself

"Dynamic" sensor: measured done at high frequencies, from second or less to few minutes, with respect to a passive sensor needing very often a longer period of acquisition time (from several hours to some weeks)

Menhaden - Brevoortia tyrannusFeed on algae including HAB (harmful algal bloom) algae and are
a bait fish for the recreational and commercial fishing industriesThey are a major part of the trophic transfer in the western
Atlantic Ocean and have been overfished –
now we also kill them with man made canals and holes
containing H2S and low O2Other anoxic areas ARE present in our Inland Bays and
elsewhere in the U.S.
These are ZONES OF DEATH for many organisms

Need

Slow down the biofouling to decrease the instrumental deviation as well as human intervention frequency

PROCAPEN project

BBE/Algae-Torch sensor to measure the chlorophyll and cyanobacteria amounts by fluorescence

Wavelength of interest in the visible range 7 exciting LED: 470, 525, 610 nm Detection in red: 680 nm

58

64

Needs for Environmental Monitoring

Requirement of environmental monitoring for protecting the public and the environment from toxic contaminants and pathogens released possibly into a variety of media including air, soil, and water

Air pollutants: SO₂, CO, NO₂, and VOCs (volatile organic compounds), originated from sources such as vehicle emissions, power plants, refineries, and industrial and laboratory processes

Soil and water contaminants: microbiological (*e.g.*, coliform), radioactive (*e.g.*, tritium), inorganic (*e.g.*, arsenic), synthetic organic or xenobiotics (*e.g.*, pesticides), and VOCs (*e.g.*, benzene)

Application of pesticides and herbicides directly to plants and soils, and incidental releases of other contaminants from spills, leaking pipes, underground storage tanks, waste dumps, and waste repositories

Possible persistence of some of these contaminants for many years and migration through large regions of soil until reaching water resources, where present an ecological or human-health threat

Needs for Environmental Monitoring

Emerging sensor technologies being first evaluated and then used to monitor environmental contaminants, particularly for long-term environmental stewardship

Focus to four categories of contaminants:

- Metals
- Radioisotopes
- Volatile organic compounds
- Biological contaminants

For each contaminant, looking for portable sensors providing rapid responses (relative to current methods and technologies), ease of operation (for field use), and sufficient detection limits

Needs for Environmental Monitoring

Due to regulatory requirements, standards and policies

For drinking water: In Europe (European Framework Directive), in USA (National Primary Drinking Water Regulations) applied to public water systems and legally enforceable standards

Aims of these primary standards: intended to protect public health by limiting the levels of contaminants being found in drinking water, although applicable to public water systems (*i.e.*, at the tap), and often applied by remediation regulators in the aquifer (*i.e.*, at the monitoring wellhead)

See: European Official Journal for the European Framework Directive, and US Environmental Protection Agency for data

Needs for Environmental Monitoring

Due to regulatory requirements, standards and policies

Storm water monitoring

National pretreatment program monitoring

Ambient air quality

Sensor technologies for environmental monitoring

The purpose of this part: identifying and describing sensor technologies being applicable to monitoring various contaminants described previously

Classification of technologies according to analyte, including trace metals, radioisotopes, VOCs, and biological pathogens

Brief description of the sensor technologies followed by tables summarizing features and specifications (*e.g.*, sensitivity, size, speed, etc.) of each sensor technology

Sensor technologies for environmental monitoring

Trace metal sensors

Nanoelectrode arrays fabricated to identify and quantify dissolved metals

- Signals from the electrodes obtained by monitoring current and voltage during application of an electrical potential
- Around 1 million individual electrodes placed on 1 cm² substrate using electron-beam lithography or chemical vapor deposition
- Sensing electrode integration with the reference electrode, eliminating need for buffers and permitting noncontaminating sensing in ultra-pure water
- Coupling the small electrode size with a very high density producing a signal with up to 103 times better signal-to-noise ratio than standard electrodes
- Using multiple electrodes, coatings, and electrochemical techniques, target analytes including toxic industrial chemicals and metals, such as trichloroethylene, As, Pb, Cr, Hg...

<section-header><section-header><section-header><list-item><list-item><list-item>

Stand-off LIBS probe head Laser ablation energy and spectroscopic collection occurring through fiber optics

Sensor technologies for environmental monitoring

Radioisotope sensors

- RadFET (Radiation field-effect transistor): concept for measuring gamma radiation dose has been around for many years
- Cadmium zinc telluride (CZT) detectors: semiconductor gamma and neutron radiation detectors, producing current flow under the influence of a gate voltage, upon exposure to high energy radiation
- Low-energy pin diodes beta spectrometer
- Thermoluminescent dosimeter (TLD)
- Isotope identification gamma detector
- Neutron generator for nuclear material detection

Sensitivity							
	Selectivity	Stability	Speed	Size	Power	User Interface	Cost
low ppb	elemental in non- complex mixtures	long- term	seconds	1 square inch dip probe		personal computer	sensor:
low ppb	elemental	long- term	ms with intensified-CCD, minutes with scanning spectrometers or signal averaging	fiber-optics; lengths of 100+ meters possible	mW per pulse	personal computer	system: \$50- 150K
-	low ppb	low ppb elemental in non- complex mixtures low ppb elemental	low ppb elemental in non- complex mixtures long- term low ppb elemental long- term	low ppb elemental in non- complex mixtures long- term interm seconds low ppb elemental long- term ms with intensified-CCD, minutes with scanning spectrometers or signal averaging	low ppbelemental in non- complex mixtureslong- termseconds1 square inch dip probelow ppbelementallong- termms with intensified-CCD, minutes with scanning spectrometers or signal averagingfiber-optics; lengths of 100+ meters possible	low ppbelemental in non- complex mixtureslong- termseconds1 square inch dip probelow ppbelementallong- termms with intensified-CCD, minutes with scanning spectrometers or signal averagingfiber-optics; lengths of 100+ meters possiblemW per pulse	low ppbelemental in non- complex mixtureslong- termseconds1 square inch dip probepersonal computerlow ppbelementallong- termms with intensified-CCD, minutes with scanning spectrometers or signal averagingfiber-optics; lengths of 100+ meters possiblemW per personal computerpersonal computer

	Summary of	of specifica	tions for	radiois	otope	sens	ors	
Specifications								
Sensor Technology	Constituitu	Colocituitu	Ctobility	Crood	Cize	Deutor		Cont
A) RadFET	5 mV/rad	speciation with filters	> 1 year, 5% drift over 1000 hours after strong exposure	milliseconds, or cumulative expose can be read later	3/2e 1/4" with ASIC and dip	passive or mW bias	sensitive digital multimeter	< \$1 in volume
B) Cadmium Zinc Telluride detectors (CZT)	0.8 mV/keV	very selective with spectroscopy	long-term	microseconds	3 mm^2 plus electronics	< 1 Watt	hand held or personal computer	\$3000+ for system
C) Low-energy Pin Diodes Beta Spectrometer	single events > 1.4 keV. Above background noise, LOD is 0.1 disintegrations/cm^2/sec (3 rem/year)	very selective	long-term	20 ms	sensor: 13 mm ² , plus electronics	passive or mW bias	hand held or personal computer	\$1000+ for photodiode
D) Thermoluminescent Dosimeter (TLD)	1 micro-rad/hour	non-specific to radiation source, but can employ filters or different crystal thicknesses and types	long-term	cumulative dose; nanoseconds per event	5 mm^2	passive	TLD Reader	low dollars for crystals \$1000+ for reader
E) Isotope Identification Gamma Detector	very high	very selective	long term	seconds	vehicle portal	110 AC	laptop	
F) Neutron Generator for Nuclear Material Detection	very high	very selective	long term	seconds	1 meter tall	110 AC	laptop	

Г

ummary	of spec	ifications for	volatile	orgar	nic comp	oound ((VOC)	sensors	
	Snecifications								
Sensor Technology	Sensitivity	Selectivity	Stability	Speed	Size	Power	User Interface	Cost	
A) Fiber Optic Chemical Sensor	low ppm for hydrophobic organics	good selectivity with multivariate analysis in moderately complex environments; coating is non- specific for hydrophobic compounds	weekly calibration	20 minutes	fiber-optics; lengths up to kilometers possible	110 V, 5 amps	laptop	\$0.25/meter \$2500 for spectrom	
B) Grating Light Reflection Spectro-electrochemistry	ppm to ppb	multivariate analysis required for simple mixtures	long term	seconds to minutes	dip probe	5 Watts	laptop	<\$500	
C) Miniature Chemical Flow Probe Sensor	low ppb to low ppm, depending on analyte	good selectivity in moderately complex matrix	flow cell and fresh reagents ensure high reproducibility	1-2 minutes	2" probe diameter, up to 150 feet long; spectrometer and PC in 2 suitcases	110 AC when built (1995)	laptop	\$10K for total syst	
D) SAW Chemical Sensor Arrays	ppm to ppb	good with multivariate analysis of mixtures that are not too complex	slow drift over time	tens of seconds	< 1 square inch sensor	mW	laptop or digital display	<\$500	
E) MicroChemLab (gas phase)	ppb	very good	slow drift over time	1-5 minutes	handheld	< 1 Watt	laptop or digital display	\$10-20K	
F) Gold Nanoparticle Chemiresistors	ppb	may be tailored to chemical classes	TBD	seconds	< 1 square inch sensor	mW	laptop or digital display	<\$100	
G) Electrical Impedance of Tethered Lipid Bilayers on Planar Electrodes	ppm to ppb	very high with antibody coatings; lower for non-specific receptors	weeks	minutes	cm*2	mW for sensor; 110 AC for whole instrument	laptop	<\$1 per senso	
H) MicroHound	ppb	fairly high	days to weeks	seconds	handheld	battery	laptop or digital display	<\$5K	
l) Hyperspectral Imaging	ppm to ppb	good with multivariate analysis of mixtures that are not too complex	long term	seconds to minutes	handheld		laptop	\$10K to \$100F	
J) Chemiresistor Arrays	~typically tens to hundreds of ppm; 0.1% of saturated vapor pressure	arrays can discriminate different classes of VOCs	slow drift over time	seconds to minutes, depending on concentration	several mm; package is ~2.5 cm diameter x~6 cm long	mW; battery powered	laptop or computer	<\$100 for sensor a package can be ~	

				Specifications				
Sensor Technology	Sensitivity	Selectivity	Stability	Speed	Size	Power	User Interface	Cost
A) Fatty Acid Methyl Esters (FAME) Analyzer	low nanograms	highly selective	SAW sensor can irreversibly load	< 10 min.	handheld	< 5 Watts per analysis	syringe and keypad or laptop	potentially < \$10K
 B) iDEP (insulator-based dielectrophoresis) 	preconcentration method for other sensors	non-selective	expected to be high	milliseconds	millimeters	< 1 W	Is a module for larger systems	< \$1
C) Bio-SAW Sensor	picograms of proteins	highly selective	SAW can drift over time; analyte binding can be irreversible	minutes	several square cm	mW	system display plus some liquid handling; laptop	<\$100 per sensor
D) µProLab	picograms	expected to be highly selective	acoustic sensors tend to drift with time; optical systems will be more stable	minutes	handheld	< 5 W	minimal fluid handling, system display or laptop	TBD
E) MicroChemLab (Liquid)	depending on analyte: 10-100 ppb for chemicals; sub-toxic (picomoles) for biotoxins	very high	hours	< 5 min	handheld	5 Watts	LCD display or laptop	< \$10K
(picomoles) for biotoxins								

Summary and comparison of relative requirements for different environmental monitoring applications								
Requirements	Drinking Water	Storm Water	Pre-Treatment	Ambient Air				
Concentration	Lowest concentrations (ppb to ppm in aqueous phase)	Higher concentrations than drinking water (e.g., arsenic is 160 ppb in storm water for wood preservers while drinking water is 10 ppb)	Concentration are higher than drinking water (e.g., TCE is 69 ppb (daily) compared to 5 ppb for drinking water); almost all biological except for a few industries that manufacture chemicals; INDUSTRY SPECIFIC	Air concentrations are typically in the ppm range				
Sampling Frequency	Most frequent sampling of the three water applications (would like real time, continuous monitoring)	Only need to sample occasionally (during rain storms)	More frequent monitoring than for storm water but less than for drinking water	Continuous (current methods average over a period of time using continuous flow)				
Sampling Method	On-line, continuous with remote telemetry	Can be hand-held for occasional sampling	On-line or hand-held	Continuous air monitoring with remote telemetry				
Sample Phase	Aqueous	Aqueous	Aqueous	Gas				

TCE: trichloroethylene

Г
Summary of potential sensor technologies being able				
	to a	ddress en	vironmental monitoring needs	
Sensor Technology	Application	Analyte	Comments	
LIBS	Drinking Water, Storm Water, Pretreatment	Trace Metals	The cost of the laser and spectrometer are high. Additional development needs to bring the price down and package it for use in water applications. Could optentially be used to simultaneously identify 9 RCRA metals plus arsenic. Sampling interval ranges from 1 s to ~1 minute (for signal averaging). Can be run continuously.	
Nanoelectrode Array	Drinking Water, Storm Water, Pretreatment	Trace Metals	Less selective than LIBS. Commercial company in Washington. Sampling interval on the order of seconds. Still under development to discern among multiple target analytes present.	
Miniature Chemical Flow Probe Sensor	Drinking Water, Storm Water, Pretreatment	VOCs, Trace Metals	Expensive because of spectrometry (like LIBS). Reagents need to be supplied. Need to acquire sample to introduce reagent in a side-stream.	
RadFET	Drinking Water	Radioisotopes	Need to use filters to allow speciation. Sensitivity in water for alpha and beta emitters is questionable given the attenuation through water.	
Low-energy Pin Diodes Beta Spectrometer	Drinking Water	Radioisotopes	Commercially available. May not need any additional development. Sensitivity in water for alpha and beta emitters is questionable given the attenuation through water.	
Cadmium Zinc Telluride Detectors	Drinking Water	Radioisotopes	Commercially available. Sensitivity in water for alpha and beta emitters is questionable given the attenuation through water.	
SAWs	Drinking Water, Storm Water, Pretreatment, Air	VOCs	Sensitivity can get down to -ppm, but fluctuations in environmental parameters (e.g., humidity, temperature) can reduce the sensitivity and accuracy. Sensor signal drifts over time. Cannot analyze more than three contaminants at once.	
Chemiresistors	Drinking Water, Storm Water, Pretreatment, Air	VOCs	Sensitivity is limited (hundreds of ppm). Needs preconcentration. These can also be used to monitor in-situ remediation activities (patent pending: SD-7097 Automated Monitoring and Remediation System for Volatile Subsurface Contaminants).	
MicroHound/Ion Mobility Spectrometer (IMS)	Drinking Water, Storm Water, Pretreatment, Air	Semi-Volatile Organic Compounds	Gas-phase detection; need to develop a sampling system to introduce water samples to IMS. Should be able to detect semi-volatile chlorinated hydrocarbons (e.g., polychlorinated biphenyls (PCBs)). Can detect pesticides, organic nitrates.	
MicroChemLab (gas)	Drinking Water, Storm Water, Pretreatment, Air	VOCs	MCL is manufacturing these for ~\$10K per unit. Additional development work is needed to adapt these systems for VOCs.	
MicroChemLab (liquid)	Drinking Water	Biological	Cost is high.	
FAME	Drinking Water	Biological	Sampling is currently done manually.	
LIBS: laser-ind	uced breakdo	own spectrosco	pv: RadFET: radiation field-effect transistor:	

SAW: surface acoustic wave; FAME: fatty acids methyl esters; RCRA: Resource Conservation and Recovery Act

Summary of the most promising technologies for each analyte class that could benefit from further development				
Sensor	Analyte	Future Development Required		
LIBS	Trace Metals	LIBS systems employ diffraction gratings that must be scanned to cover the spectral range of metal contaminants with sufficient resolution for positive identification and quantification. Speed could be increased through the use of Sandia's programmable diffraction grating. Simultaneous determination could be made through the computer-aided design of holographic diffraction gratings.		
CZT	Radioisotopes	These detectors are inexpensive and sensitive to regulated radiation levels. Commercial spectrometer systems are available. A low level effort could adapt the spectrometer for water monitoring. Alpha emitting contaminants in water can not be detected by radiation events as alpha radiation is noncentrating.		
MicroChemLab, gas phase	VOCs	Due to the wide variety of organic contaminants that can be present in air or water, separation is essential for analysis. The MicroChemLab can be adapted to collect and analyze in both air and water. Leveraging funding could direct development towards specific targets.		
MicroHound/Ion Mobility Specrometry	Semi-Volatiles	The ion mobility spectrometer behind this instrument can be used in positive mode for common semi-volatiles or negative mode for highly selective detection of pesticides and halogenated semivolatiles. The diffusion-based separation using a chromatography column.		
Bio-SAW Sensor	Biological Pathogens	Sensors with bioreceptors are highly selective, providing detection amplification over background contaminants. Still, biofouling can occur. Further development is needed to array significant numbers of sensors into a small area for multi-pathogen monitoring.		
	r induced bee	okdowo opostroogopyy C7T, codmium sine telluride.		
LIBS: laser-induced breakdown spectroscopy; CZT: cadmium zinc telluride; SAW: surface acoustic wave				

Acknowledgments: MAISOE, MIACTIS projects, chantier ICE, FCS STAE + Equipex CRITEX

11 people granted by the Foundation STAE:

Stéphane Aouba (LAAS), Cédric Boulart (GET), Olivier Carraz (LAAS-OSE), Pierre-Jean Debouttière (LCC), William Giraud (Legos), Teddy Hézard (LGC-LCA), Ana-Maria Lazar (Cirimat), Laure Laffont (LCA-LGC), Ludovic Lesven (Legos), Maud-Alix Mader (LAAS), Emilie Vanhove (LAAS), Dancheng Chen Legrand (Legos), Emilie Lebon Tailhades (LCC)

3 invited well known researchers: Prof. Bernhard Wehrli (ETH Zürich, EAWAG), Dr. Ken Johnson (Monterey Bay Aquarium Research Institute, USA), Prof. George Luther III (Delaware University, USA)

28 permanent researchers:

Christian Amatore (ENS-CNRS, Paris), Philippe Arguel (LAAS), Michel Armengaud (GIS-OMP), Maëlenn Aufray (Cirimat), Carole Barus (Legos), Olivier Bernal (LAAS-OSE), Thierry Bosch (LAAS-OSE), Michel Cattoen (LAAS-OSE), Bruno Chaudret (LCC), Valérie Chavagnac (GET), Maurice Comtat (LGC), Brigitte Dubreuil (LCA), David Evrard (LGC), Katia Fajerwerg (LCC), Véronique Garçon (Legos), Pierre Gros (LGC), Anne-Marie Gué (LAAS), Pierre Joseph (LAAS), Pierre Lacroix (LAAS), Jérôme Launay (LAAS), Françoise Lozes (LAAS), Diane Samelor (Cirimat), Han-Cheng Seat (LAAS-OSE), Pierre Temple-Boyer (LAAS), Claire Tendero (Cirimat), Danièle Thouron (Legos), Constantin Vahlas (Cirimat), Pierre Fau (LCC), Myrtil Kahn (LCC), Georges Merlina (EcoLab), Philippe Behra (LCA)

Plus technician people and internship students (Master or engineer students)

